A Study of the Effect of Data Normalization on Software and Information Quality
Assessment

Morgan Ericsson, Welf Lowe, Tobias Olsson, Daniel Toll, and Anna Wingkvist
Department of Computer Science
Linnaeus University, Sweden
email: {Morgan.Ericsson | Welf.Lowe | Tobias.Ohlsson | Daniel. Toll | Anna.Wingkvist} @ Inu.se

Abstract—Indirect metrics in quality models define weighted
integrations of direct metrics to provide higher-level quality
indicators. This paper presents a case study that investigates to
what degree quality models depend on statistical assumptions
about the distribution of direct metrics values when these are
integrated and aggregated. We vary the normalization used
by the quality assessment efforts of three companies, while
keeping quality models, metrics, metrics implementation and,
hence, metrics values constant. We find that normalization has
a considerable impact on the ranking of an artifact (such as a
class). We also investigate how normalization affects the quality
trend and find that normalizations have a considerable effect on
quality trends. Based on these findings, we find it questionable
to continue to aggregate different metrics in a quality model
as we do today.

I. INTRODUCTION

Quality models define how to integrate and aggregate
direct metrics to abstract scores that represent the quality
of a software system or a technical documentation. These
are useful to discuss an abstract notion such as qual-
ity with stakeholders. Approaches such as Goal-Question-
Metric (GQM) [1] can help stakeholders focus on what to
measure as well as why. Process models [2] help define
weights for different metrics and questions according to their
perceived impact on quality.

Different metrics have different scales and scale types, so
values of metrics should be normalized to avoid comparing
“apples and oranges”. While stakeholders can easily validate
direct metric values, they may find it difficult to validate
normalized metrics scores and, hence, the integrated and ag-
gregated quality scores. This can undermine trust in quality
assessment as such, especially, if the results are unexpected.

We can use linear normalization models, that are easy
to compute and to explain, or models that consider the
distributions of the metrics values, which are mathematically
more sound but rely on time consuming and error prone
computations to normalize. In our experience, the latter
are more difficult to explain to stakeholders and more
difficult for them to validate. So, we ask ourselves: Does
normalization matter? Do linear normalization models and
normalization models based on approximate distributions
result in: a) the same interpretation of quality in a specific
release and b) the same quality trend?

We conduct a case study to investigate if different normal-
ization approaches applied to the same set of metrics can,
after integration in a quality model, result in different quality
statements about the assessed software and documentation
artifacts. The real world subjects span software and infor-
mation, different programming and specification languages,
as well as different branches of industry.

II. BACKGROUND

The Goal-Question-Metric paradigm provides a method to
create quality models that define conceptual quality Goals,
operational Questions, and quantitative Metrics. To assess
if a goal is achieved, the model is followed in reverse
order of definition. The artifact is measured, and the metrics
values are integrated (added) to answer the question in
a quantitative way. Questions can be considered indirect
measures whose values can be further integrated to provide
a numerical score for the quality goal, which can be inter-
preted as the degree to which an artifact posses the desired
quality properties.

All questions are not equally important and all metrics
are not equally good indicators to answer a question. To
reflect this, questions and metrics are weighted, and direct
and indirect metrics are integrated using weighted sums.
When computing indirect metrics corresponding to questions
and quality goal, it is not meaningful to just add values of
different direct metrics like, e.g., Number of call sites and
Lines of code. Values should be normalized before they are
integrated. There are different ways to normalize metrics
values from different metrics. To simplify the discussion all
our normalizations will compute scores between 0 and 1.

Normalize(X) = M (1)
max — min

We can normalize values by looking at max and min
values in each domain according to Eq. 1. This corresponds
to linear regression models. The values are now in the same
range, but it is not more appropriate or mathematically sound
to add them. We usually assume that extreme metrics values
are indicators of bad quality. Whether large or small values
are bad depends on the metrics and the quality goal. For this

discussion we can, without loss of generality, assume that
large values are bad. Assume the distribution of all possible
values of a metric is known. Given a cumulative probability
function of such a distribution, we can, for each value we
measure, calculate the probability that this or a smaller value
is observed. Very large (bad) values have a probability close
to 1, and very small (good) values a probability close to 0.

Normalize(X) is the cumulative probability of a metrics
value X (i.e., the probability that other metrics values are
< X)) if the values of that metric are uniformly distributed
between min and max. If, however, the metrics values
were normally distributed, cumulative probabilities would
be computed according to Eq. 2, where p is the mean and
o the standard deviation.

NormDist(X) =

1 X —u
S(rer((57)) @
1 T,
erflr) = —— et dt. 3)
VT) .

Given a fitted distribution for each metric, the normalized
metrics scores indicate how extreme a measured value is
compared to other values of a metric. Hence, these scores are
comparable for different metrics. In a quality model, we can
now integrate different metrics of an artifact by computing
(weighted) sums of these normalized metric scores.

However, most software metrics are neither uniformly
nor normally distributed [3, 4]. In order to find a sound
normalization using cumulative probabilities, there is a need
to consider and fit alternative distributions.

III. METHODOLOGY

We conduct an exploratory case study to investigate
how different normalization models affect software and
information quality assessment. The subject of investigation
is the complete automated quality assessment process of
3 companies; the quality model, the metrics, the system
(or documentation), and the assement tools. We rely on 3
subjects to provide data source triangulation.

Subject A is the information quality assessment process
(cf. Figure 1) of a telecom infrastructure provider applied to
one of their documentations. The documentation is in XML
and consists of 18 parts (from 8 KiB to 8.5 MiB).

Subject B is the software quality assessment process(cf.
Figure 2) of a small games development company applied
to 6 of their games. The games are developed in C++ and
have between 2,500 and 10,500 lines of code.

Subject C is the software quality assessment process (cf.
Figure 3) of a large mobile hydraulics company applied
to their integrated development tool. This tool is used to
develop hydraulics control software in a domain-specific
language. We follow their assessment over one year (8 minor
versions). The tool is implemented in Delphi and consists
of 110 Delphi Units. A single Unit contains 1 — 266 files.

e ——XMLSix
Spe=—"""_ vl

Text Size
Maximum subsection nesting
. o % #Parallel subscctions
Analyzability —ea— Complexity > #Paralle] subsection:
#Internal references

#Cross-References

Coupling ————é3+——— #Outside References

#Version References

S XMLSize
Tt TS

Maximum subsection nesting
Complexity ————#——— #Parallel subsections
#lnternal references

#Cross-References

Changeability //
TN Coupling T os——— #Outside References
2 \H\ #Version References
Maintainability \\ _ 4s—— XML clonedness
Clonedness — 7)
Text clonedness
Change Frequency —————— #Revisions
#Cross-References
Coupling =——s+——— #Outside References
\WM\

#Version References

Stability 3 XML clonedness
™ ——— Clonedness vl
Text clonedness

\N\ Change Frequency

#Broken References

#Revisions

#Incomplete Revision Entries

#Non-Terminated Tags

I-Incorrectness ——é+—— #lnvalid Start Tags
#Incorrect Encoding
#Non-terminated PI

#DTD Validation Errors

Figure 1. Quality model in Subject A.

Afferent Coupling
r/‘/‘/ﬁ/ Lines of Code
Dependency
\\”Q Number of Children
o
Type Rank
Quality Association between Types
\\ / Cyclomatic Complexity
g /M/
Depth of Inheritance
Understandabiliy —7"
% Efferent Coupling
vecs
ey Number of Children
Number of Methods

Figure 2. Quality model in Subject B.

For each subject, we use 3 different normalizations to
integrate the direct metrics in the quality model. We use 1)
linear regression (INormalize, cf. Eq. 1), 2) NormDist (cf.
Eq. 2), and 3) the best fit of the following distributions: Beta
Distribution, Exponential Distribution, Extreme Value Dis-
tributions (Smallest Extreme Value, Largest Extreme Value,
Weibull, Fréchet), Gamma Distribution, Johnson Family of
Distributions, Logistic and Loglogistic Distributions, Log-

C)Llom atic Complexity

Complexi ‘) Lines of Code

I\lem I Afferent Coupling

% Internal Efferent Coupling
\f"‘“\Ex: ernal Afferent Coupling

Lack of Matrain .m
Ensm al Efferent Coupling
Ui
TTesa
Lack of Testing
#Global Variabes
Figure 3. Quality model in Subject C.

Table I
BEST FIT DISTRIBUTIONS FOR EACH OF THE METRICS. PARAMETERS
ARE OMITTED. * DENOTES THAT THE SAMPLE DID NOT PASS A

NORMALITY TEST AFTER TRANSFORMATION.

Metrics

Best Fit Distribution

XML Size

Text size

#Broken References
#Incomplete Revision Entries
#Non-Terminated Tags
#Invalid Start Tags
#Incorrect Encoding

Beta applied to In(X)
Beta applied to In(X)
Beta*
Beta*
Beta*
Beta*
Beta*

Depth of Inheritance
Number of Methods
Cyclomatic Complexity

< | #Non-Terminated PI Beta*
'g #DTD Validation Errors Largest extreme value*
'_'-; Maximum subsection nesting | Johnson applied to In(X)*
@ | #Parallel subsections Johnson applied to In(X)*

#Internal references Johnson*

XML clonedness Pearson applied to In(X)

Text clonedness Beta*

#Cross-References Largest extreme value*®

#Outside References Largest extreme value*

#Version References Largest extreme value®

#Revisions Exponential*

Lines of Code Gamma applied to In(X)

Number of Children Beta applied to In(X)*
x| Type Rank Largest extreme value applied to n(X)*
5 | Afferent Coupling Largest extreme value applied to In(X)
-2, | Efferent Coupling Largest extreme value applied to In(X)*
& | Association between Types Lognormal*

Normal*
Gamma applied to In(X)
Johnsson applied to In(X)

Subject C

Lines of Code

#Interface Functions
#Declarations

Cyclomatic Complexity
Afferent Internal Coupling
Efferent Internal Coupling
Afferent External Coupling
Efferent External Coupling
Unit comment score
Function comment score
Declaration comment score
#Global Variables

Lack of Testing

Johnson applied to In(X)

Largest extreme value applied to In(X)
Largest extreme value applied to In(X)
Pearson applied to {n(X)

Largest extreme value applied to In(X)*
Largest extreme value applied to In(X)*
Beta*

Beta*

Beta*

Largest extreme value®

Beta*

Johnson*

Beta*

normal Distribution, Normal Distribution, Pearson Family
of Distribution (Includes Inverse Beta and Inverse Gamma),
and Uniform Distribution. We refer to the selected (param-
eterized) distribution as BestF'it. Note that the BestF'it
distribution is just the optimum among the set of tested
transformations — there is no guarantee that the p-value is
below a certain significance level, e.g., & = 0.05. So, there
can be significant departures from a normal distribution.
Table I shows BestF'it for each metrics, followed by a * if
the sample did not pass a normality test after transformation.

For each of the distribution based normalizations N, we
define a derived normalization, N > 80%: A metrics value
X gets a score of Nuggy(X) = 1 iff N(X) > 0.8 and
N-go%(X) = 0 otherwise. The motivation is to further ab-
stract the metrics and only distinguish critical metrics values
from acceptable values. Finally, we use 3 normalizations that
are agnostic to distributions. First, we compute the z-score of
a metrics value and abstract the z-score further to distinguish
critical from acceptable metrics values: zs45(X) = 1 iff
z2(X) > 4.5 and z510(X) = 1 iff 2(X) > 10, respectively.
The motivation for these bounds is that (metrics) values
from a normal distribution with a z-score larger that 4.5
are considered extreme and, regardless of the distribution, a
z-score larger that 10 is considered an extreme value even
for long-tailed distributions.

For each subject, the metrics data is normalized and
aggregated, and a rank is determined. Each subject consists

of a number of entities, e.g., classes, documents, and files.
The metrics values for each entity are normalized. We
compute the average of the normalized scores of the entities
in their structural containers (e.g., a method is contained
by a class). For example, in Subject B, we compute the
average of the normalized Lines of Codes (and all other
metrics’) scores the classes contained by each game. We use
the following containers: A) the package a document belongs
to, B) the game a class belongs to, and C) the Delphi Unit
a file belongs to.

The container ranked 1 is considered to have the “worst”
quality, i.e., has the highest problem score. For each subject
and normalization, we compare the different ranks of a
specific container by computing the total edit distance'. The
edit distance reflects the effect of various normalizations on
the computed quality rank; the larger the edit distance, the
larger effect the different normalizations have.

IV. ANALYSIS

Subject A considers the quality assessment of a technical
documentation that consists of 18 packages (cf. Table II).
The package ranks vary depending on normalizations; many
packages are either considered to have good or bad quality.
If we consider Package 19084, we find that linear normal-
ization ranks the package as 2, while best fit ranks it as
8 out of the 18 packages. The package is either one of
the worst or somewhere in the middle. Note that an entry
in Table II depicts the ranking for an entire package, so
even if the values are similar, there can still be a large
difference in the rankings of individual documents and/or
for individual metrics. The latter is analyzed in Table ITI. We
compare the results of different normalization by looking at
the average edit distance between rankings, i.e., the number
of changes required to transform one to another. The average
is computed over the edit distances between the rankings
induced by the normalizations for each direct and indirect
metrics. The edit distances of Subject A are generally
quite large, which indicates that the normalizations produce
different results even for individual metrics. For example,
the distance between rankings induced by Normalizegyy
and BestDist is 16.14 on average over all metrics assessed
by Subject A.

Subject B considers the quality assessment of 6 computer
games. Each game is measured, normalized and ranked as
shown by Table IV. The ranks vary depending on normaliza-
tion; almost every game is either considered best or worst.
Consider, for example, the game “GoL”. We find that if we
use a linear normalization, the game is considered to have
the best quality. However, if we only consider values that
are larger than 80% as outliers of the population, it has the

'We use the Levenshtein distance between two ranking strings defined
as the minimum number of edits needed to transform one string into the
other; edit operations are insertion, deletion, or substitution of a single
(rank) character.

Table 11
THE EFFECT OF DIFFERENT NORMALIZATIONS ON THE QUALITY RANK OF THE XML PACKAGES OF SUBJECT A. THE PACKAGES ARE RANKED BY
QUALITY PROBLEMS, SO RANK 1 HAS THE WORST QUALITY AND RANK 18 HAS THE BEST.

Package | Normalize Normalize.goy, NormDist NormDistsggy, z-score z-scoresjp 2-scores4.5 BestDist BestDistsggy,
33 6 7 2 5 14 10
651 18 15 18 18 18 7 15 18 17
1531 9 13 9 9 10 3 11 7 8
1543 6 7 6 6 6 7 6 4 6
1550 15 14 17 14 16 4 12 16 14
1551 8 9 8 10 9 7 14 5 7
1553 10 10 10 11 13 7 8 11 12
10945 3 3 2 3 3 7 2 6 3
10948 1 2 1 1 2 7 3 1 1
12446 11 15 12 12 11 7 4 12 15
15372 5 5 5 5 5 7 15 2 2
15411 14 15 16 16 17 7 15 15 16
15451 13 11 15 17 14 7 13 17 18
19012 17 15 14 15 15 7 15 13 10
19080 7 8 7 8 8 6 10 9 9
19083 12 12 11 13 12 5 9 10 13
19084 2 1 3 2 1 1 1 8 5
22102 4 4 4 4 4 7 7 3 4
Table III

THE AVERAGE EDIT DISTANCE BETWEEN RANKINGS INDUCED BY DIFFERENT NORMALIZATIONS ON SUBJECT A. THE AVERAGE IS TAKEN OVER THE
PACKAGE RANKINGS WITH RESPECT TO EACH DIRECT AND INDIRECT METRICS (NOT ONLY THE QUALITY RANKING).

Normalize. go, NormDist NormDist-, gg9

z-score z-scoresp z-scores4 5 BestDist BestDists ggy

13.24 8.48

16.19

11.29
12.76
13.90

Normalize
Normalize >80%
NormDist
NormDist, gg
z-score
z-score=10
2-SCoTe€> 4.5
BestDist

3.38
14.48
7.76
13.05

14.38
8.95

16.71
14.14
15.14

13.05 9.71
8.67 16.14
16.00 7.86
12.62 14.62
14.29 10.33
9.67 16.67

16.00

10.95
13.00
13.24
7.67

12.71
14.10
12.90
12.76

worst quality. We find a similar effect when we consider the
z-score; when we only look at the more extreme values, the
quality of GoL drops from rank 4 (good) to 1 (worst). If we
only consider the distribution-based normalization, we find
less variation, but GoL still ranks as 5 or 6, depending on the
normalization. Note that Normalize and z-score produce
an edit distance of 0.0 (cf. Table V), which suggests that
they produce the same ranking, even though the rankings
in Table IV differ. This is an effect of calculating the edit
distance as the average of the rankings of all metric values
and requires further investigation.

Our analysis of subjects A and B shows that the different
normalizations have an effect; no two normalizations pro-
duces the same ranking for the total quality and the average
edit distances over individual metrics rankings are quite
high. It also suggests that the normalizations that consider
only the extremes of a population are more unstable than
rankings induced by the distribution-based normalizations. If
we consider subject C, we find similar results. Tables VI and
VII depicts the ranking and edit distance, respectively, for
Subject C. Note that due to the large amount of Delphi Units
in Subject C, Table VI only shows the worst 20. The edit
distances are then computed on the rankings of all Delphi
Units (hence the large values of almost 110).

The analysis of subjects A — C suggests that the choice
of normalization has an impact on our understanding of the
entities” and containers’ quality. However, we only consider
a single release in these 3 subjects, so it is not clear whether
the normalization will affect our understanding of whether
the quality improves or deteriorates over several releases of

the same system. In order to determine if different normal-
izations converge to a single trend, we analyze eight uploads
of a single system (in Subject C). Table VIII shows the
trends of the overall quality using different normalizations.
A plus (+) denotes that the overall quality improved while
a minus (—) denotes that the quality worsened. Different
normalizations result in different trends; the quality of the
system can be considered to be only improving, only deteri-
orating, or almost anything in between, depending on which
normalization we use. However, compared to the analysis
of a single release, there is no major difference between
distribution-based normalizations and the derived ones.

V. RELATED WORK

Several efforts, e.g., ISO/IEC [5], McCall et al. [6], and
Fan et al. [2] suggest that different software measurements
can be combined to form quality models and used to assess
one or more quality attributes of a software system, such
as maintainability. Efforts to develop models and tools to
automatically assess these include VizzAnalyzer [7] and
Crocodile [8]. The models and tools combine several mea-
surements, and need to carefully consider the implications
of (software) measurement theory, such as scale levels and
what operations are allowed. Zuse [9] discusses the problems
involved, such as the need for and problem of normaliza-
tion of different measurements. For example, VizzAnalyzer
assumes that the measurement results are of normal or
uniform distribution. Kitchenham et al. [10] discuss the
variation of a distribution, and why it is important to have
a representative population model to be able to interpret the
measured values. There is, however, no discussion on the

Table IV

THE EFFECT OF DIFFERENT NORMALIZATIONS ON THE QUALITY RANK OF THE GAMES OF SUBJECT B. THE GAMES ARE RANKED AFTER QUALITY
PROBLEMS, SO RANK 1 HAS THE WORST QUALITY AND RANK 6 HAS THE BEST.

Game | Normalize Normalize,go%, NormDist NormDist, gy, 2-score z-score>1p 2-score-4.5 _ BestDist BestDist- 599,
GoL 6 1 5 5 4 1 4 5 5
Hero 2 3 3 1 2 3 5 3 1
TWTPB 5 4 6 6 5 2 1 6 6
Time Breaker 1 5 1 2 1 3 2 2 2
Frontline 3 6 2 3 3 3 6 1 3
PirateQuest 4 2 4 4 6 3 3 4 4

Table V

THE AVERAGE EDIT DISTANCE BETWEEN RANKINGS FROM DIFFERENT NORMALIZATIONS APPLIED TO SUBJECT B.

Normalize.go, NormDist ~ NormDist. gy, 2-score z-scores1g 2-scores4.5 BestDist BestDists gpy
Normalize 4.42 2.67 333 0.00 4.83 4.25 3.00 3.83
Normalize, g9 4.42 4.58 4.42 3.75 3.75 4.42 4.75
NormDist 3.58 2.67 4.92 4.42 2.00 3.42
NormDist~, g9, 333 4.92 4.50 3.75 3.17
z-score 4.83 425 3.00 3.83
z-scores10 3.50 4.92 5.08
2Z-SCOTe>4.5 4.75 4.75
BestDist 3.42

Table VI

THE EFFECT OF DIFFERENT NORMALIZATIONS ON THE QUALITY RANK OF THE PACKAGES OF SUBJECT C. THE PACKAGES ARE RANKED AFTER
QUALITY PROBLEMS, SO RANK | HAS THE WORST QUALITY. WE DISPLAY ONLY THE TOP 20 (WORST) PACKAGES OF THE 110 PACKAGES.

Rank | Normalize Normalize.ggy NormDist —NormDist, gy, 2-Score z-score>1p 2z-scoré-4.5 BestDist BestDist. ggy,
1 78 21 104 57 78 78 78 104 57
2 6 7 21 104 27 38 34 13 34
3 2 78 57 21 7 7 38 57 12
4 7 6 34 83 38 28 43 33 33
5 21 2 6 33 34 57 94 5 13
6 104 13 17 4 57 12 7 21 5
7 33 11 33 34 21 56 27 4 54
8 11 33 4 7 104 21 28 54 31
9 4 8 2 6 54 11 54 34 97
10 8 4 7 78 17 17 57 6 99
11 5 5 54 2 6 27 37 17 4
12 17 24 22 75 4 6 12 88 10
13 13 16 13 17 28 2 56 2 35
14 1 1 11 8 11 1 97 7 104
15 16 104 75 22 75 3 101 12 36
16 34 17 8 41 2 4 21 41 88
17 24 46 41 13 33 5 18 1 101
18 41 32 1 11 13 10 75 11 75
19 57 41 61 61 12 11 93 75 81
20 88 88 5 5 22 12 13 32 17
Table VII
THE AVERAGE EDIT DISTANCE BETWEEN RANKINGS FROM DIFFERENT NORMALIZATIONS APPLIED TO SUBJECT C.
Normalize. go, NormDist ~ NormDist. ggy, 2-score z-scores1p 2-scores4.5 BestDist BestDists ggy
Normalize 100.38 55.62 88.77 29.85 106.31 106.31 68.31 87.54
Normalize~ go%, 100.85 100.85 100.62 50.31 108.69 101.62 109.08
NormDist 96.08 59.77 107.00 106.54 78.31 103.62
NormDist, go%, 97.31 107.00 106.08 98.62 91.62
z-score 106.46 106.38 76.92 101.54
Z-scores10 83.85 109.08 98.08
2-SCOT€>4.5 108.38 98.54
BestDist 93.23
Table VIII

THE EFFECT OF DIFFERENT NORMALIZATIONS ON THE QUALITY RANK OF DIFFERENT VERSIONS OF THE SYSTEM IN SUBJECT C. A + DENOTES THAT
QUALITY HAS IMPROVED, — DENOTES THAT IT WORSENED, AND ~ DENOTES NO CHANGE OR NO REFERENCE.

Upload Date | Normalize Normalize.gp, NormDist NormDisty ggy, 2-score z-scores 1o 2-score>4.5 BestDist BestDists gy
Upload 120101 ~ ~ ~ ~ ~ ~ ~ ~ =
Upload 120706 + + + — + — — + 4
Upload 120806 + + - — — — + — _
Upload 120917 - —+ — - — + + — —
Upload 121011 + + — - + + + + —
Upload 121023 + + - — — — — — _
Upload 121119 + + — — — — — + +
Upload 121212 + + + - + - + + —

effects of normalization that assumes improper distributions, TRAN programs Knuth [11] and Laemmel and Shooman
or how combinations of different distributions propagate. To [12] show that Zipf’s law can be

our knowledge, there exist no such studies.

Some effort has been directed towards understanding the
shape of software, i.e., the population models of different
measurements. Early efforts include Knuth’s study of FOR-

applied to operator and

operand counts in software to derive measurements similar
to those of Halstead. Barkmann et al. [4] investigates how
measurements on open source Java programs are distributed,
and found the skewness value positive. Wheeldon and

Counsell [13] also study measurements from open source
Java programs and find that they are power-laws. In an
attempt to reproduce the result of Wheeldon and Counsell
using a larger corpus of Java programs, Baxter et al. [3]
find that their results only provide support for power-laws
for some measurements. Others follow what they refer
to as a “truncated curve distribution”. They suggest that
programmer awareness and type of application can affect
the distribution of certain measurements.

VI. CONCLUSIONS AND FUTURE WORK

We find it questionable to continue to aggregate different
metrics in a quality model as we do today. In each of the
studied quality models, the ranking of packages and, hence,
the interpretation highly depends on the normalization used.
We argue that for any of the normalizations suggested not
only the quality results (quality scores) but also their inter-
pretation (ranking of packages and files with respect to these
quality scores) is volatile. The quality trend, i.e., the change
in the quality score observed for a complete system over
different releases also highly depends on the normalization
used. Two different normalizations can, for the same metrics
and quality model, present contradicting trends; one suggests
that the quality is constantly improving, the other that
the quality is constantly deteriorating (e.g., cf. Table VIII
columns Normalizesggy and NormDistsggy).

The best fit approximation of a sample distribution sug-
gests a mathematically sound normalization. However, we
observe that about 50% of the metrics values do not pass
a normality test after transformation. Further, the best fit
distribution for similar metrics in different projects can be
different, for example Lines of code where the best fit is
Gamma in Subject B and Johnson in Subject C. Hence,
sound normalizations are not easy to calculate in practice.

Our research question assume that we can find a proper
normalization that provides an accurate assessment based on
our understanding of the quality of the system under assess-
ment. However, since we in many cases find that metrics
values do not pass a normality test after transformation and
that the best fit is volatile depending on Subject, release,
etc., we find that the ground truth (i.e., the accurate quality
ranking) is less important. The volatility of the ranking
depending on normalizations and that we often cannot find
a proper choice are major contributions of this paper.

We still need to investigate whether the distributions of
individual metrics are stable across several releases of a
system, similar systems from different companies, or even
systems from different domains. It would be interesting to
develop robust mathematical and software tools to reliably
approximate best-fit distributions for samples of metrics
values. In the long run, lab experiments using benchmark
system where we have an understanding of the quality
should determine the normalization methods that best corre-
late with our understanding of the quality of those systems.

This should provide us with “the right normalization” for a
specific system and metric.

Finally, we should consider alternatives to today’s quality
models for integrating and aggregating metrics values of
entities to quality scores of systems. Bakota et al. [14]
introduces a quality model based on probabilities. It would
be interesting to compare the results of such a model to the
result of the various normalizations.

REFERENCES

[1] V. R. Basili, G. Caldiera, and H. D. Rombach, “The
goal question metric approach,” in Encyclopedia of
Software Engineering. Wiley, 1994.

[2] M. Fan, Y. Luo, G. Wu, and X. Fu, “An improved
analytic hierarchy process model on software quality
evaluation,” in Int Conf Information Science and Engi-
neering, dec. 2010, pp. 1838-1842.

[3] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero, “Understanding
the shape of Java software,” SIGPLAN Not., vol. 41,
no. 10, pp. 397412, Oct. 2006.

[4] H. Barkmann, R. Lincke, and W. Lowe, “Quantitative
evaluation of software quality metrics in open-source
projects,” in Proc Works. Advanced Information Net-
working and Applications, 2009, pp. 1067-1072.

[5] ISO/IEC, ISO/IEC 9126. Software Engineering — Prod-
uct Quality. I1SO/IEC, 2001.

[6] J. A. McCall, P. G. Richards, and G. F. Walters,
“Factors in Software Quality,” NTIS, NTIS Springfield,
VA, Tech. Rep. Volume I, 1977.

[7]1 R. Lincke, J. Lundberg, and W. Lowe, “Comparing
software metrics tools,” in Proc Int. Symp. Software
Testing and Analysis, 2008, pp. 131-142.

[8] C. Lewerentz and F. Simon, “A product metrics tool
integrated into a software development environment,”
in Proceedings of the Workshop on Object-Oriented
Technology at ECOOP’98, 1998.

[9] H. Zuse, Software complexity: measures and methods,
ser. Programming complex systems, 1991.

[10] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “To-
wards a framework for software measurement valida-
tion,” IEEE Trans. Softw. Eng., vol. 21, no. 12, pp.
929-944, 1995.

[11] D. E. Knuth, “An empirical study of FORTRAN pro-
grams,” Software: Practice and Experience, vol. 1,
no. 2, pp. 105-133, 1971.

[12] A. Laemmel and M. Shooman, Software Modeling
Studies, Volume II, 1978.

[13] R. Wheeldon and S. Counsell, “Power law distributions
in class relationships,” in IEEE Int’l Works. Source
Code Analysis and Manipulation, 2003, pp. 45-54.

[14] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and
T. Gyiméthy, “A probabilistic software quality model,”
in ICSM. 1EEE, 2011, pp. 243-252.

