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Abstract—Numerous empirical studies confirm that many soft-
ware metrics aggregated in software quality prediction models
are valid predictors for qualities of general interest like maintain-
ability and correctness. Even these general quality models differ
quite a bit, which raises the question: Do the differences matter?
The goal of our study is to answer this question for a selection of
quality models that have previously been published in empirical
studies. We compare these quality models statistically by applying
them to the same set of software systems, i.e., to altogether 328
versions of 11 open-source software systems. Finally, we draw
conclusions from quality assessment using the different quality
models, i.e., we calculate a quality trend and compare these
conclusions statistically. We identify significant differences among
the quality models. Hence, the selection of the quality model has
influence on the quality assessment of software based on software
metrics.

I. INTRODUCTION

Software analysis and quality assessment as supported by
product metrics1 receive quite some attention by the research
community. Efforts are directed to both the development of
(object-oriented) product metrics [3]–[5] and on their valida-
tion [6]–[10]. The latter is particularly important since metrics
are of little value by themselves unless there is empirical
evidence that they are correlated with important external
(quality) attributes [11]. Such a correlation allows using the
metrics in the assessment and prediction of software quality,
which is input to quality-control and -management, and to
general planning activities.

As discussed by Briand [12], Fenton [13], and Kitchen-
ham [14], we distinguish two types of validation: theoretical
and empirical validation. Theoretical validation ensures that
a product metric is a proper numerical characterization of the
property it claims to measure. Empirical validation demon-
strates that a product metric is associated with some important
quality attributes, e.g., correctness or maintainability.

Theoretical validations have shown that certain program
constructs have a causal relationship with some qualities [15]–
[17]. The current theoretical framework for explaining the
effect of the structural properties of object-oriented programs
on quality attributes has been justified empirically [18]. Most
studies agree that highly cohesive, sparsely coupled, and low
inheritance programs are less likely to contain faults and

1Literature distinguishes between the notions ”metric” and ”measure” [1].
We use ”metric” to be consistent with ISO 9126 [2], which defines a ”software
quality metric” as a ”quantitative scale and method which can be used to
determine the value a feature takes for a specific software product.”

are easier to maintain. The empirical validation of object-
oriented product metrics [18]–[20] shows evidence for the
predictive validity of many product metrics. As a matter of
fact, the metrics proposed in the Chidamer and Kemerer
metrics suite [3] are even integrated in industrial strength
software development tools like Rational Rose2 and Together3.

Existing empirical validation studies collect product metrics
as independent variables and aim at predicting either software
faults or maintenance costs as dependent variables by applying
a variety of so-called software prediction models. A software
quality prediction model, in short a quality model, maps
metrics values to a quality attribute. Depending on the product,
company, branch, customer, etc., different quality attributes
might be interesting, but some of them are generally positive,
e.g., few faults or low maintenance costs. The validations aim
at predicting such positive quality attributes with the help of
product metrics and quality models. For statistical validations,
the quality attributes need to be assessed quantitatively as
well, independently of the metrics and the quality models.
Therefore, the number of software faults is derived from tests
or bug databases [8]–[10], [18], [21].

The maintenance costs are more difficult to determine and
usually approximated through maintenance effort. This effort
is measured by means of the time spent on performing a
maintenance task [6], [22], the changes performed [21], [23],
[24], or the maintainability index (MI) [25]. The changes made
in the code is in most cases approximated by number of lines
of code changed. MI is a statistically validated quality model
itself that is based on various product metrics4. Hence it is
considered trustworthy.

As a consequence of the varying experimental setups of the
validation studies, literature suggests quite a large number of
different quality models based on different product metrics.
All of them are validated to assess and predict the one or the
other general notion of software quality, but they are validated
using different sample data and dependent and independent
variables. This makes it difficult for both researchers and
practitioners to decide which quality model is trustworthy. It

2http://www-01.ibm.com/software/awdtools/developer/rose/
3http://www.borland.com/us/products/together/index.html
4MI combines several metrics including: the avg. Halstead volume per

module, the avg. extended cyclomatic complexity per module, the avg. lines
of code per module, and the avg. percent of lines of comments per module.
However, a correlation of this metric and the actual “maintainability” has been
shown in several studies [25].



is not even known if these models differ in their assessments
and the resulting conclusions.

This study answers these questions for a number of selected
quality models. The remainder of this paper has the following
structure: Section II discusses the background of our validation
study. Section III summarizes the design of the experiment.
Section IV discusses data collection and measurement, eval-
uation, and analysis. Section V concludes this paper and
presents future work. The appendix provides complementary
information regarding the selection of one of the investigated
quality models.

II. BACKGROUND

Eurocontrol developed, together with its partners, a high
level design of an integrated Air Traffic Management (ATM)
system across all ECAC States5. It was planned to supersede
the current collection of individual national systems. The sys-
tem architecture, called Overall ATM/CNS Target Architecture
(OATA), is a UML specification. As external consultants,
we supported the structural assessment of the architecture
using a metrics-based approach using our software metrics
tool VizzAnalyzer6. The pilot validation focused only on a
subsystem, consisting of 8 modules and 70 classes, of the
complete architecture.

We jointly defined the set of product metrics which quantify
the architecture quality – a subset of the UML specification
(basically class and sequence diagrams). Since no best prac-
tice existed, we defined our own software quality prediction
model based on ISO 9126. We used the Factor-Criteria-Metric
approach of McCall [26] but defined our own quantitative
relationship between metrics, quality attributes, and quality
factors, mainly based on our intuition. During this definition
process, we had to choose from several equally intuitive
variants and we neither had the time nor the resources to
evaluate all of them. During evaluation of our assessment,
Eurocontrol raised two questions which we could not answer
in a satisfactory way:

Q1 [validity of the quality model] Do the suggested
and different alternative software quality prediction models
calculate comparable results for the same input?

Q2 [validity of the conclusions] If not, does this matter?
More specifically, do these differences lead to different con-
clusions?

In the following, we describe the experiment and conclu-
sions that aim at answering these questions. We use a larger
statistical basis than the OATA project could provide.

III. EXPERIMENT DESIGN

A. Experiment Definition

We define our experiment to analyze different software
quality prediction models (Section III-C). The purpose is
to find out differences in the prediction functions and in
the conclusions drawn. We take the point of view of the

5European Civil Aviation Conference; an intergovernmental organization
with ore than 40 European states.

6http://www.arisa.se

practitioner in software quality management assessing several
versions of the same project.

B. Planning the Experiment

1) Context Selection: The environment in which the exper-
iment is executed is open-source Java projects. Generalization
to other projects will be discussed in Section III-D as a threat
to the experiment. Two of the authors of this paper conduct
the experiment. The experiment addresses a problem observed
in practice.

2) Hypothesis Formulation: We want to know if different
software quality prediction models QM provide different
assessments of software quality attributes Q′ when applying
them to the same system(s). Furthermore, to compare con-
clusions regarding a quality trend, we assess several versions
of the same test systems. The typical approach for evaluating
software quality in object-oriented systems is to assess quality
on class level with the help of a number of software quality
metrics, and then to aggregate the different metrics values of
different classes to one value on system level.

First, we apply software metrics to a software system and
calculate a specific metrics value for each class in the system
and each metric of the quality model. Let Ci,j,k denote a
class k in a version j of a software system i. Ml(Ci,j,k) is
the value for metric l of class Ci,j,k. Considering L different
metrics, I software systems each in Ji different versions each
in turn containing Ki,j classes, results in a huge amount of
information. To reduce it, different software quality prediction
models QMn aggregate some or all values Ml(Ci,j,k) to a
quality Qn(Ci,j,k) per class Ci,j,k, and summarize Qn(Ci,j,k)
for all classes of one version to a quality Q′

n(Si,j) on system
level. While we use different quality models QMn to integrate
the metrics values per class Qn(Ci,j,k), we use the same
aggregation QM ′ to integrate these per class quality values
to system level quality Q′

n(Si,j), see Figure 1.
Secondly, we aim at drawing conclusions from the system

level quality values. For our experiment, we draw conclusions
based on the quality trend. In other words, we ask if for a
project i the quality Q′

n(Si,j) is improving over the version
j, or if it is constant or even deteriorating. Therefore, we nor-
malize the values Q′

n(Si,j) such that 1 is the worst quality and
0 is the best quality for each of the quality models QM1..N ,
and aggregate the values Q′

n(Si,j) for different versions of a
system to a common trend value Tn,i. Therefore, we use the
slope of the linear regression function regn,i = an,ij + bn,i

of each project i over its versions j. Our trend conclusion
Tn,i is improving iff an,i is negative, “deteriorating” iff an,i

is positive, and “constant” iff it is (close to) zero.
As already discussed in the introduction, it is possible to

choose from several software quality models. These define
the aggregation of individual metrics to the quality Q of a
class. Q is then aggregated to the quality Q′ of a system and,
hence, allows to come to different trend conclusions T about
the quality of the system. We formalize the resulting research
questions with the following hypotheses:
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Fig. 1: Aggregating metrics values for classes to system level
using different quality models.

Q1 Null hypothesis: There is no principle difference in the
software quality Q′

1..N measured by the same metrics
M1..L applied to the same test systems Si,j and aggre-
gated with different quality models QM ′ •QM1..N , i.e.,
H0: Q′

1(Si,j) = f2(Q′
2(Si,j)) = . . . = fN (Q′

N (Si,j))
with linear functions f .
Alternative hypothesis: There is no such set of linear
functions f , i.e., H1: Q′

1(Si,j) 6= f2(Q′
2(Si,j)) 6= . . . 6=

fN (Q′
N (Si,j)) for linear functions f .

Measures needed: metrics values per class M1..L(Ci,j,k),
software quality values per class Q1..N (Ci,j,k), and soft-
ware quality values per system Q′

1..N (Si,j).
Q2 Null hypothesis: There is no difference in the conclusions

Tn,i based on different qualities Q′
1..N (Si,j) resulting

from different quality models QM ′ • QM1..N for the
versions j ∈ [1 . . . Ji] of the same test project i, i.e.,
H0: T1,i = . . . = TN,i

Alternative hypothesis: There is a difference, i.e., H1:
T1,i 6= . . . 6= TN,i

Measures needed: trend conclusions per system
T1..N,i based on software quality values per system
Q′

1..N (S1..J,j).

3) Variable Selection: The independent variable is the
quality model QM . The dependent variable is the system level
software quality Q′ and resulting trend conclusions T .

4) Selection of Subjects/Objects: First, we consider variants
of an ISO 9126-based quality model. Additionally, we consider
quality models from literature, but we limit ourselves to
evaluating only those based on similar evaluation approaches
and on the same input metrics. Using models with a too diverse
set of input metrics would increase the effort for collecting
these metrics beyond our resources. Thus, we omit approaches
involving Neural Networks etc. for integrating and aggregating
the individual class level metrics values. The selected quality
models are a sample of models discussed in literature, but not
a random sample.

Second, we limit ourselves to a single software metric tool,
VizzAnalyzer, since repeating the experiment with several
tools would require a much higher effort on measurement, data
collection, evaluation, and analysis. In fact, we have shown
earlier that different metrics tools lead to different class level
quality values for the same system(s) and the same quality
model and even to different conclusions regarding the quality
ranking of the classes [27].

Third, the quality models and the metrics tool limit, in

turn, the selection of software quality metrics. The selected
metrics are a sample of metrics described in literature, but not
a random sample.

Finally, further limitations apply to the software systems
analyzed. Since the selected metrics tool (as most alternative
tools) works on source code, legal restrictions limit the suitable
systems. Thus, we restrict ourselves to open-source software
as available on SourceForge.NET7. The test systems selected
are a random sample.

5) Experiment Design: The dependent variable software
quality Q′

n(Si,j) is measured on a ratio scale, and the resulting
trend conclusion Tn,i is measured on an ordinal scale (improv-
ing is better than constant is better than deteriorating). We
use Pearson correlation and ANOVA or their non-parametric
alternatives to compare the correlation between the system
level qualities (trend conclusions) when applying the different
quality models to the same system (project).

C. Instrumentation

Our experiment is performed on the available working
equipment, i.e., a standard PC satisfying the minimum re-
quirements of the software measurement, data collection, and
evaluation tools.

1) Software Metrics Selection: We consider the union of
the sets of metrics required as input by the different software
quality models (discussed below). Most metrics originate from
well-know metrics suites like Chidamber & Kemerer [3],
namely Coupling Between Objects (CBO), Depth of Inher-
itance Tree (DIT), Lack of Cohesion in Methods (LCOM),
Number Of Children (NOC), Response For a Class (RFC),
Weighted Method Count (WMC) using McCabe Cyclomatic
Complexity as weight for the methods; Li & Henry [28],
namely Data Abstraction Coupling (DAC), Message Pass-
ing Coupling (MPC), Number Of local Methods (NOM),
Number of Attributes and Methods (NAM/SIZE2); Bieman
& Kang [29], namely Tight Class Cohesion (TCC); Hitz
& Montazeri [30], namely Locality of Data (LD), Improve-
ment of LCOM (ILCOM). Additionally, we added commonly
known metrics like Length of class names (LEN), Lines Of
Code (LOC), and Lack Of Documentation (LOD). Finally, the
Cyclicity (CYC) of a class measures the size of the largest
cycle of this and other classes over call, access, and inheritance
relations.

A detailed discussion of the above (and other) software
metrics can be found in [31]. An overview including ex-
act definitions is provided in the “Compendium of software
quality standards and metrics” [32]. The definitions given
in the compendium are used as the basis for the metrics
implementations in VizzAnalyzer.

2) Quality Model Selection: Many quality models dis-
cussed in literature predict the maintainability of classes based
on static metrics. This also holds for the different variants of
the ISO 9126-based quality model and two regression-based
models from literature we selected.

7http://sourceforge.net - from now on referred to as SourceForge.
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Category Sub-Category Metric

size LOC -- -- - --

NAM -- -- - --

NOM -- -- - --

WMC -- -- - --

RFC -- -- - --

DIT -- -- - --

NOC - -- - -

CBO -- -- -- --

DAC -- -- -- --

LD ++ ++ ++ ++

MPC -- -- -- --

LCOM -- -- -- --

ILCOM -- -- -- --

TCC ++ ++ ++ ++

Documentation LOD -- -- - --

LEN -- -- -- --

CYC -- -- -- --

.

Design guidelines & 

Coding conventions Guidelines

Complexity
interface C.

structural C.

Architecture & 

Structure

Inheritance 

Coupling

Cohesion

Main property Maintainability

Fig. 2: Software Quality Matrix, showing only maintainability
related quality factors, criteria and metrics and their relation-
ship. (+)+ (strong) direct, and (-)- (strong) indirect correlation.

The mapping QM1 from the individual metrics values to
the criteria and, finally, to maintainability,

a) ISO 9126-based Variants: Each quality model
QM1...N in this category maps and aggregates the individual
metrics values to the quality factor maintainability via the cri-
teria analyzability, changeability, stability, and testability, as
seen in Figure 2. All N variants count classes that are outliers.
That means classes having values outside their desired value
range. The quality models differ in how they determine the
outliers. We introduce in the following the baseline approach
(System values 15%) in detail. Then, we briefly present how
the other quality model variants (All values 15% and All rank
15%) differ.

Remark: We select a threshold of 15% since this was the
threshold we used in the Eurocontrol project. We therefore
expect it to be a good example of industrial practice. Addi-
tionally, an empirical evaluation of alternative threshold values
in a range of 5% – 50% showed that using different thresholds
has only little effect on the conclusions as presented later on in
Table IV. We present a summary of the alternative conclusions
for the System values 5%, 10%, 20%, 30%, 40%, and 50%
thresholds in the appendix, Table V, for reference.

I. System values 15%. A class C is an outlier wrt. metric
Ml and criterion c if and only if the metrics value Ml(C)
is within the highest (lowest) 15% of the value range
measured for any class in the system if low (high) values
are desired for Ml to satisfy a criterion. We denote
this with an indirect auxiliary metric M criterion

l (C). We
define Ml,out = (Ml,max − Ml,min) × 15%, where
Ml,max(Ml,min) is the maximum (minimum) value of
Ml for any class in the system. Furthermore, we define

M low
l (C) =

 1 if Ml(C) ∈ [Ml,min . . .Ml,min+
Ml,out);

0 if otherwise.
(1)

and

Mup
l (C) =

 1 if Ml(C) ∈ (Ml,max−
Ml,out . . .Ml,max];

0 if otherwise.
(2)

For metric Ml with a direct correlation with a criterion
we define: M criterion

l (C) = M low
l (C). For metric Ml

with an indirect correlation to a criterion we define:
M criterion

l (C) = Mup
l (C), cf. Figure 2 for the corre-

lation of the metrics (rows) to the criteria (column). Note
that Ml,max = Ml,min implies that Ml,out = 0 and
M criterion

l = 0 for all classes C, i.e., no extreme value
and, hence, no outliers for metric Ml.
The individual metrics values M criterion

l (C) are then
aggregated to a single value M criterion(C) per criterion
and class according to the weights as defined in the
quality model. Let wcriterion

l be the weight connecting
metrics Ml with a criterion. It is two for strong direct or
strong indirect connection and one for direct or indirect
connection. We define:

M criterion(C) =

L∑
l=1

M criterion
l (C)× wcriterion

l

L∑
l=1

wcriterion
l

(3)

The maintainability Q(C) of a class C is now defined
as the average of MAnalyzability(C), MChangeability(C),
MStability(C), and MTestability(C). The values range
from 0 to 1, with 0 being the best possible maintainability,
since C is not an outlier wrt. any metric and criterion.
Value 1 indicates the worst possible maintainability, since
all metrics values for C exceed their thresholds.

II. All values 15%. This variant differs only in that we
define Ml,out = (Ml,max,157−Ml,min,157)×15%, where
Ml,max,157 (Ml,min,157) is the maximum (minimum)
value of Ml for any class in 157 systems, with 245,320
classes overall, analyzed by Barkmann et al. [33].

III. All rank 15%. This variant differs only in how we define
M low

l (C) and Mup
l (C): for each metric, the values of the

classes in the 157 systems (from the Barkmann study) are
sorted increasingly (decreasingly, resp.), and we define
the outlier interval borders for M low

l (C) (Mup
l (C), resp.)

as the value of the class at rank 245, 320×15%. M low
l (C)

(Mup
l (C), resp.) = 1 iff Ml(C) is smaller (larger, resp.)

than this outlier interval border, and 0 otherwise.
A fourth alternative System rank 15% does not make
sense when aggregating the class to the system level
values (= 0.15 for all systems) and is therefore omitted.



b) Regression Model-based Variants: These variants are
taken from two studies. They directly calculate the quality on
class level Q(C).
IV. Regression A. Subramanyam and Krishnan [9] provide

empirical evidence supporting the validity of a subset
of the Chidamber and Kemerer suite [3] in determining
software defects. They collected the product metrics
manually from industry data (B2C e-commerce applica-
tions) involving programs written in Java and C++. They
applied linear regression to predict software defects from
metrics. The dependent variable is the defect count, which
includes defects reported from customers and defects
found during customer acceptance testing, leading to the
following quality model for Java programs:

1/Q(C) = 0.6570− 0.00003×MSIZE(C)− (4)
0.0032×MWMC(C) + (5)
0.0011×MCBO(C) + (6)
0.1180×MDIT (C)− (7)
0.0210×MCBO(C)×MDIT (C) (8)

V. Regression B. Yu et al. [10] empirically validated ten
object-oriented metrics, among them the Chidamber and
Kemerer suite [3], wrt. their usefulness in predicting fault-
proneness as an important software quality indicator. The
test system was written in Java and had 123 classes.
They collected defects found during testing (together with
their severity and type) as stored in a problem tracking
system. This information was used as the dependent
variable. Using regression, they statistically derived a
quality model:

Q(C) = 0.520 + 0.462×MNOM (C) + (9)
0.190×MCBO(C)− (10)
0.241×MRFC(C) + (11)
0.097×MLCOM (C) + (12)
0.175×MDIT (C) + (13)
0.256×MNOC(C) (14)

For all five quality models, the mapping QM ′ from quality
Q(C) of classes to a system level Q′(S) is simply the average
of Q(C) of all classes of the system.

3) Measurement Process and Software Measurement Tool
Selection: Figure 3 provides an overview of our measurement
processes and tools. It is built around an IDE for extracting
the basic information about the projects, Eclipse (a), the
metrics tool for computing metrics values, VizzAnalyzer (b),
a local database for storing the data, MS Access (e), tools
for statistical analysis, MS Excel and SPSS8 (f), and a tool
for evaluation and abstraction of the data stored in the local
database, the SQM Tool (g).

8http://www.spss.com
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Fig. 3: Tools and Processes.

The projects are located in an Eclipse workspace (a) as
Java projects. They are complete and compilable, which is a
prerequisite for data extraction. The VizzAnalyzer metric tool
(b) is fed with low-level information from the Eclipse projects
(syntax, cross references, etc.) and computes the metrics. We
use VizzAnalyzer for the metrics extraction, but other software
metrics tools (cf. Lincke et al. for an overview [27]) could have
been used as well. The VizzAnalyzer was our choice since it
supports automated processes: an interface (c) allows for batch
processing of a list of projects and an export engine (d) to
store the computed metrics in a database for later processing.
The SQM Tool (g) implements the different software quality
prediction models and allows for a flexible calculation of the
quality values.

The presented tools and processes were already proven
functional in a previous study conducted by Barkmann et
al. [33].

4) Test System Selection: We compute the metrics for
testing our hypotheses from a number of test systems. For
computing a trend, we need a sufficient number of versions
of one and the same project to be statistically significant.
We selected Java software projects from SourceForge and the
Apache Software Foundation and, to ensure that the projects
and systems are not trivial, we applied two selection criteria:
(i) each version of a project must have at least 40 classes, and
(ii) each project must have at least 10 different versions over
time.

Below, we briefly introduce the 11 software projects se-
lected. We list them alphabetically. Avalon provides Java
software for component and container programming (http:
//avalon.apache.org). Checkstyle is a development tool to help
programmers write Java code by automating the process of
checking the compliance to style guidelines (http://checkstyle.
sourceforge.net). JasperReports is a business intelligence and
reporting engine written in Java. It is a library that can be
embedded in other applications (http://jasperforge.org). jEdit
is a programmer’s text editor written in Java which uses the
Swing toolkit and is released as free software (http://www.
jedit.org). log4j is a logging tool. It is written in Java and logs
statements in a file (http://logging.apache.org/log4j). Lucene
is an information retrieval library, originally created in Java,
ported to other programming languages including Delphi, Perl,
C#/++ (http://lucene.apache.org). Oro includes a set of text
processing Java classes that provide Perl5 compatible regular
expressions, AWK-like regular expressions, glob expressions,
and utility classes for performing substitutions, splits, filtering,
etc. (http://jakarta.apache.org/oro). PMD is a Java source code
analyzer written in Java. It scans Java source code and looks



TABLE I: Descriptive statistics of projects over all considered versions (before removal of outliers).

Classes & LOC in LOC in LOC in
Files Interfaces Fields Methods Files Classes Methods Versions

Mean 409.63 566.87 2,112.50 4,134.99 94,695.76 88,023.39 59,277.37 31.18
Std. Error 14.67 20.72 95.92 185.31 4,243.66 4,077.23 2,719.82 5.04

Median 367 514 1,594 3,668 71,282 63,720 41,853 24
Mode 197 292 830 1,490 12,709 29,257 18,580 19

Std. Dev. 271.68 383.67 1,776.44 3,432.00 78,593.73 75,511.31 50,371.86 16.71
Kurtosis 0.11 0.06 1.36 1.55 1.04 1.44 1.08 -1.62

Skewness 0.86 0.77 1.30 1.33 1.20 1.30 1.20 0.39
Range 1,111 1,641 7,416 14,405 324,204 316,496 207,508 44

Minimum 13 13 28 118 2,135 1,824 1,248 11
Maximum 1,124 1,654 7,444 14,523 326,339 318,320 208,756 55

Sum 140,502 194,435 724,587 1,418,302 32,480,645 30,192,022 20,332,137 343
Count 343 343 343 343 343 343 343 11

for potential problems (http://pmd.sourceforge.net). Struts is
a Web application framework for developing Java Web appli-
cations (http://struts.apache.org). Tomcat 6.x is a Servlet con-
tainer written in Java. It includes tools for configuration and
management (http://tomcat.apache.org). Xerces is an XML
parser (http://xerces.apache.org/xerces2-j).

In total, during the course of this experiment, we have
analyzed 11 projects in 343 versions (approx. 29.73 versions
per project). Some standard descriptive statistics about this
project group are provided in Table I.

D. Validity Evaluation

1) Conclusion validity: assures a statistical relation with
sufficient significance between the different quality models
QM applied and the quality values Q′ and trend conclusions T
observed. We are confident that the applied statistical methods
are appropriate; their assumptions are fulfilled, even though we
do not include a detailed discussion for the sake of brevity.
The data set for Q1 (328 versions) is suitably large to get
significant results. For Q2, we still obtain significant results
despite the rather limited amount of data (11 projects).

2) Internal validity: of the actual experiment assures that
only the varying quality models QM may cause the effects on
the observed values Q′ and trend conclusions T . As we have
a straightforward experiment design—no humans involved, no
time dependency, only two independent variables—we have
full control over the experiment.

3) Construct and external validity: are about generalizing
the experimental design to the theory behind the experiment
and to industrial practice. Software metrics and quality models
are indeed used for quality assessment and their conclusions
are input for quality management activities; both are relevant
in industry. Our metrics, quality models, trend conclusions,
and systems observed are good representatives of industrial
practice.

As discussed in the introduction, the available metrics and
related theory has been validated in empirical studies. Selected

metrics are integrated in state-of-the-art development tools. We
did not vary the metrics tool used, as our previous study [27]
showed deviations in measured values for the same metrics and
software. Using an alternative but correct metrics tool should
not have an impact on the results.

Our baseline quality model (I) is even based on an ISO
standard and has already been used in several industrial
projects. The models (II, III) are minor variations thereof.
The two regression-based quality models (IV, V) are taken
from literature. To avoid taking them out of context, we
carefully checked and guaranteed all preconditions, e.g., the
programming language. However, a threat to validity is the
assumption that other quality models deliver similar results.

Concluding trends out of a series of assessments has
been documented in the FAMOOS Handbook of Reengineer-
ing [34].

The selected test systems are non-trivial, even though they
are open-source. A threat to construct validity is the assump-
tion that the programming language has no impact and that
our findings are transferable to non-Java programs.

IV. ASSESSMENT OF HYPOTHESES

A. Measurement and Data Collection

We use the data collection process and tools discussed in
Section III-C to collect the data from the different versions of
the test systems. The database contains the different metrics
values Ml, Qn, and Q′

n, available for further analysis with
MS Excel and SPSS. We collected data from all 11 projects
with 343 versions.

B. Analysis and Interpretation

1) Descriptive Statistics: We collected 17 metrics values
(Ml, l = 1 . . . 17) for each of the 194,435 classes and inter-
faces of the test systems. Based on this data, we calculated five
different quality values per class/interface using our quality
models (Qn, n = I . . . V ). This data was then aggregated to
five different quality values Q′

n, n = I . . . V , on system level



for the 11 systems in all 343 versions. We summarize the
collected data using descriptive statistics, scatter plots, etc.,
but exclude them here for brevity.

2) Data Reduction and Transformation: We removed ver-
sions which do not fulfill the requirement regarding the
minimum number of classes, i.e., in project Checkstyle all
versions prior to 3.0. Further, we removed multiple copies
of version 1.2.14 (1.2.14-maven and 1.2.14-updatesite) in
project log4j. In JasperReports, we removed version 1.3-
alpha1 and 1.3-alpha5, which have, compared to the versions
coming before and after them, twice as many classes. Here,
the developers seemed to have reorganized their workspace.
In project Struts, we removed versions 1.3 and 1.3.1 because
they did not compile. The versions have less than half of
the classes of the versions before and after them. Also, we
removed version 0.5 since we think that it is experimental,
and version 2.1.2 since it is not part of the 1.x project line,
and we could so far not analyze the remaining versions of the
2.x project line. For project Xerces2, we removed versions
1.0.0 and 1.0.1, since they have three times the number of the
classes of the versions thereafter. After reduction, data from
328 versions remained for evaluation and analysis.

Since the number of versions per project Ji depends on
the project i, we need to normalize the version numbers of
the different projects between 0 and 1 in order to make them
comparable. The first (oldest) version of a project gets the
number 0; the latest version gets the value 1. For project i,
the version number j is normalized by

ĵ =
j −min(Ji)

max(Ji)−min(Ji)
. (15)

Even though the quality values Q′
n are already between

0 and 1 by definition, they are project relative and thus on
a project specific scale with a project specific mean. We
use standardization for calculating the standardized values
from the project specific distribution of Q′

n to make them
comparable. The project specific distribution is characterized
by the project specific mean (arithmetic mean/average, Q′

n,i)
and the project specific standard deviation (σi). Then the
standardized quality Q′

n computed by quality model n for a
version j in a project i is

Q̂′
n,i,j =

Q′
n,i,j −Q′

n,i

σi
. (16)

3) Hypothesis Testing: To answer our first research ques-
tion Q1, we assess the associated hypothesis and calculate
for all projects the correlation (Pearson correlation r) between
the System Values 15% quality (I) and the other four other
qualities (II—V). We assume direct correlation for r×0.5, and
indirect correlation for r ×−0.5. The results are summarized
in Table II. In 15 cases, the quality models (II—V) correlate
directly with System Values 15% (I). In 29 cases, we cannot
confirm a direct correlation, and 10 cases even show an
indirect correlation. This allows us to reject H0 and answer the
research question Q1 by: There are principle differences in

TABLE II: Correlation between quality Q′
I...V of systems

Si,j computed with different quality models QM ′ •QM1...5.
Pearsons correlation, all correlations significant at the 0.01-
level.

r(I,II) r(I,III) r(I,IV) r(I,V) #

Avalon 0.9 0.5 -0.88 -0.88
Checkstyle 0.87 0.94 -0.68 0.87

JasperReports 0.69 0.3 0.55 0.76
jEdit 0.81 -0.53 0.05 -0.62
log4j 0.43 -0.28 -0.19 -0.41

Lucene 0.77 -0.73 0.09 -0.63
Oro 0.41 0.1 -0.86 -0.75

PMD 0.29 0.45 -0.93 0.98
Struts 0.72 0.71 -0.19 0.32

Tomcat6 0.44 0.34 0.45 0.33
Xerces2 0.85 0.89 0.09 0.14

Correlated 7 4 1 3 15
Not correlated 4 5 6 4 19

Indirectly correlated 0 2 4 4 10

the software quality Q′
I...V measured by the same metrics

M1...17 applied to the same test systems Si,j and aggregated
with different quality models QM ′ •QMI...V .

The qualities of the individual versions are meaningless
by themselves; they are further abstracted to (trend) inter-
pretations. Hence, we want to answer question Q2, i.e., do
different quality values lead to different trend conclusions,
i.e., do the differences in the quality model actually matter.
Figures 4a, 4b, and 4c show three examples of the trends we
observed in the 11 analyzed projects. Each diagram displays
the normalized versions on the x-axis, and the standardized
quality values on the y-axis. For project Avalon, the quality
models System Values 15%, All Values 15%, and All Rank 15%
show a generally improving trend, while Regression A and B
show a deteriorating trend. But for project JasperReports,
all models show an improving trend, while for project Struts,
all show a deteriorating trend.

In order to answer Q2, we calculate linear regression
functions for all quality models in each of the test systems. The
results are summarized in Table III. We provide an,j and bn,j ,
the coefficients for the linear regression functions, as well as
the coefficient of determination (r2) and the observed F-value
(F-test, p = 0.01) for significance testing. We see that most of
the calculated regression lines are significant (bolt, observed
F-value larger than critical F-value).

Regardless of the significance, we may formalize the trend
Tn,j using the slope an,j of the linear regression models:
Tn,j is improving (deteriorating) iff an,j ≤ −0.5 (≥ 0.5),
and constant otherwise. Table IV gives all conclusions drawn
from the quality values over project versions and the quality
models. As already indicated by the diagrams in Figure 4,
the conclusions largely depend on the quality models. Some
quality models seem to agree, at least for certain projects,
e.g., System Values 15%, All Values 15%, and All Rank 15%
for Avalon, JasperReports, and Xerces2; Regression A and
B for Avalon, Checkstyle, JasperReports, etc. Yet some
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Fig. 4: (a-c) Selected projects showing different trends for the quality prediction models. (d) Frequency of different trend
conclusions of the quality models I—V.

TABLE IV: Conclusions Tn,i for the projects i = 1 . . . 11
according to the quality models I–V. Quality is improving (+),
constant (∼), or deteriorating (-).

I II III IV V

Avalon + + + - -
Checkstyle + - - + +

JasperReports + + + + +
jEdit + + - - -
log4j + + - - -

Lucene + + - + -
Oro + ∼ + - -

PMD + - - + -
Struts - - - + -

Tomcat6 + - + - +
Xerces2 + + + ∼ +

conclusions are contradictory, e.g., for projects Avalon and
log4j.

We compare the trend due to the different quality models
(I—V) using a one-way repeated measures ANOVA and
observe effective differences for the models: Wilks’ λ = 0.334,
F (4, 7) = 3.483, p < 0.1, multivariate partial η2 = 0.67. The
Friedman test confirms statistically significant differences of
the quality models: χ2(4, n = 11) = 15.05, p < 0.01. This
lets us reject H0 for the second research question Q2 and
conclude: The differences among the quality models even
lead to different conclusions.

Finally, we computed the correlation coefficients of the
trends for all pairs of quality models. It showed that the models
I and II (III and V) are positively correlated, r = 0.625

(r = 0.637), significant at the 0.05-level, 2-tailed. The cor-
relation of the models I and II supports that outlier thresholds
can be defined on value ranges relative to a (sufficiently large)
system and by using global value ranges. The correlation of
III and V and, even more so, the lack of a correlation of the
models IV and V, both validated regression models for defects,
come at some surprise and need further studies, especially in
the light of the relatively small statistical basis of only 11
samples (projects) for the statistics answering Q2.

V. CONCLUSIONS AND FUTURE WORK

Do different alternative software quality prediction models
calculate comparable results for the same project? No, we
could not show a significant correlation between the quality
values of different quality models regardless of the analyzed
projects. Does this matter? Yes, we could show that the
different quality models applied to the same project lead to
different quality trend judgments, hence, to different conclu-
sions. The obtained results are interesting for researchers and
practitioners alike. Researchers obviously have to be careful
when generalizing the validity of software quality prediction
models. Practitioners need a very good understanding of the
software quality prediction models they apply (instead of using
them as black boxes) to draw appropriate conclusions.

Future work should repeat this study involving more
projects and, hence, increase the statistical basis for the second
question. It would also be interesting to analyze more thor-
oughly why the quality models lead to the observed differences
in assessments and conclusions.



TABLE III: Regression equations (regn,i = an,i × j + bn,i) per project and quality model. Coefficient of determination of
correlation (r2) and observed F-values (F ). Critical F-values (F-crit.) for one degree of freedom and p < 0.01. Bolt values:
observed F-values are significant.

I II III IV V
Coeffi- an,j bn,j an,j bn,j an,j bn,j an,j bn,j an,j bn,j n
cients r2 F r2 F r2 F r2 F r2 F F-crit.

Avalon -2.8 1.4 -2.52 1.26 -1.38 0.69 2.79 -1.4 2.8 -1.4 11
0.86 56.7 0.7 20.8 0.21 2.4 0.86 53.7 0.86 57.1 10.56

Check- -0.8 0.17 -1.33 1.29 -0.7 0.91 0.08 -0.64 -0.15 -0.45 17
style 0.1 1.69 0.38 9.3 0.05 0.8 0.01 0.1 0.08 1.2 8.68

Jasper- -3.03 1.51 -2.46 1.23 -1.44 0.72 -1.9 0.95 -2.79 1.4 21
Reports 0.88 141.5 0.58 26.8 0.2 4.7 0.35 10.1 0.75 57.3 8.18

jEdit -3.13 1.57 -2.92 1.46 1.78 -0.89 0.54 -0.27 2.51 -1.25 53
0.87 330 0.75 154.6 0.28 19.7 0.03 1.4 0.55 63.3 7.16

log4j -1.42 0.73 -2.44 1.24 2.77 -1.39 1.14 -0.5 2.65 -1.3 50
0.18 10.5 0.59 68.7 0.71 116.2 0.15 8.4 0.61 73.9 7.19

Lucene -2.4 1.2 -3.04 1.52 1.36 -0.68 -0.93 0.47 3 -1.5 19
0.56 21.8 0.9 157.6 0.18 3.8 0.08 1.6 0.88 127.7 8.4

Oro -2.61 1.31 0.08 -0.04 -1.34 0.67 2.92 -1.46 2.82 -1.41 13
0.72 28.1 0 0 0.19 2.6 0.9 99.7 0.84 57.2 9.65

PMD -10.31 2.59 -3.68 0.4 -1.98 0.21 10.43 -1.15 -1.81 -0.57 19
0.89 134.3 0.18 3.7 0.27 6.4 0.8 68.4 0.84 87.8 8.4

Struts 1.78 -1.33 1.79 -1.04 2.97 -1.72 -1.02 0.47 2.19 -0.97 66
0.34 32.7 0.22 18.3 0.5 63.3 0.12 8.7 0.35 35.1 7.05

Tomcat6 -0.71 0.35 2.15 -1.07 -2.96 1.48 1.94 -0.97 -2.87 1.44 19
0.05 0.87 0.45 14 0.85 100.2 0.37 9.9 0.81 70.7 8.4

Xerces2 -3.04 1.61 -3.32 1.73 -3.19 1.68 0.41 -0.24 -0.24 0.06 40
0.72 96.1 0.92 411.1 0.84 204.4 0.01 0.5 0.01 0.2 7.35

APPENDIX

Table V shows alternative conclusions Tn,i for projects
i = 1 . . . 11 according to the quality model I. We used a
System values 5%, 10%, 20%, 30%, 40%, and 50% thresh-
olds in comparison to the 15% threshold (bold) discussed in
Section III.

TABLE V: Conclusions Tn,i for the projects i = 1 . . . 11
according to the quality model I with different threshold
values. Quality is improving (+), constant (∼), or deteriorating
(-).

5% 10% 15% 20% 30% 40% 50%

Avalon + + + + + + +
Checkstyle + + + + - ∼ ∼

JasperReports + + + + + + +
jEdit + + + + + + +
log4j + + + + + + +

Lucene + + + + + + +
Oro + + + + + + ∼

PMD + + + + + + +
Struts - - - - - - -

Tomcat6 + + + ∼ + + +
Xerces2 + + + + + + +

Improving 10 10 10 9 9 9 8
Constant 0 0 0 1 0 1 2

Deteriorating 1 1 1 1 2 1 1

Figure 5 shows for project Struts different trends for
quality prediction model I using System values 5%, 10%,
20%, 25%, 30%, 35%, 40%, 45% and 50% thresholds (gray)
in comparison to the 15% threshold (black), as discussed in
Section III. It is visible that despite the different thresholds the

trend lines follow a common trend. This observations could
also be made in the other projects being part of this study.

Struts (5% - 50%, stepsize 5%)
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Fig. 5: Different trends for project Struts using quality model
I with different threshold values.
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[32] R. Lincke and W. Löwe, “Compendium of Software Quality Standards
and Metrics,” http://www.arisa.se/compendium/, 2005.

[33] H. Barkmann, R. Lincke, and W. Löwe, “Quantitative Evaluation of
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