
A Qualitative Evaluation of a Software Development and Re-Engineering Project

Thomas Panas Rüdiger Lincke Jonas Lundberg Welf Löwe

Software Technology Group
MSI, University of Växjö, Sweden

{Thomas.Panas|Rudiger.Lincke|Jonas.Lundberg|Welf.Lowe}@msi.vxu.se

Abstract

The VizzAnalyzer is a framework for analyses and visu-
alizations of software. It has been developed over years, to
a great deal by students and PhD students. In between it has
been re-engineered to improve the software quality. In this
paper, we publish the results of the software quality mea-
surements over different versions of the VizzAnalyzer frame-
work with well established quality metrics. Some metrics
uncover qualities we were aiming at in our re-engineering,
e.g. maintainability, some others uncover qualities we were
deliberately ignoring or did not even think about, e.g. good
”object-orientedness”. Our measurements validate our ex-
pectation: the former metrics significantly improve over the
versions whereas the latter contain positive as well as neg-
ative surprises.

1. Introduction

Software maintenance has become important for today’s
software industry in order to prolong the lifetime of soft-
ware products. However, maintaining a complex software
over the years is not a simple task since many problems
might occur during its lifetime. For example, the original
developers may have left the company, the documentation
and original design documents may be no longer available
or updated, the size and complexity may have grown, bug
fixes and new functionality might have increases beyond a
comprehensible level.

These problems do not only appear in industrial projects,
but are sometimes even worse in university projects. Stu-
dent developers increase problems related to software qual-
ity. Students enter and leave projects frequently. Hence,
expert developers are the exception. Furthermore, students
are less trained and experienced and, thus, design faults are
frequent. The VizzAnalyzer [1, 2], a tool that has been de-
veloped at Växjö University over the last two years now, is
such a student project.

In this paper, we investigate the source code quality of
the VizzAnalyzer, a source code extraction, analysis and vi-
sualization framework. For this, we apply well established
metrics in order to measure the systems quality w.r.t. main-
tainability and other object-orientation qualities. We inves-
tigate six versions developed over the last two years.

In the next section, we document the VizzAnalyzer, its
purpose and development history for the last two years. In
addition, we describe the mainly intuitive development and
re-engineering decisions for some major release versions
over the years. In Section 3, we describe the metrics used
to justify our intuitive development and re-engineering de-
cisions. In Section 4, we introduce how to interpret the met-
rics in the context of maintenance and good object-oriented
design in general. Section 5 presents our analysis results of
applying the described metrics on our own tool. A discus-
sion of the results follows in Section 6. Section 7 concludes
the results and shows directions of future work.

2. The VizzAnalyzer

The VizzAnalyzer is a framework designed to aid pro-
grammers in software engineering activities like mainte-
nance and re-engineering. It allows to integrate different
reverse-engineering tools, i.e. software tools for program
analysis and/or visualization can be plugged into the frame-
work. With the plug-ins at hand, the VizzAnalyzer frame-
work allows to interactively and iteratively retrieve program
information, focus, analyze, and visualize it.

As depicted in Figure 1, the VizzAnalyzer framework
connects different in-house and external tools via wrap-
pers, where syntactical and semantical data adaptations
are defined. For more information about architecture, de-
sign and functionality, we refer to [2]. Currently, we
have extended the VizzAnalyzer with the following exter-
nal reverse-engineering tools:
Recoder [3] is a Java framework for source code meta pro-
gramming aiming at delivering an infrastructure for Java
analysis and transformation tools. Recoder is used for

Vizz3dyEdAnalyzerRecoder

Core

Analyses

Recoder Analyzer Vizz3dyEd

Visualizations

... ...

VizzAnalyzer - Framework

...GML GXLConverter

Wrapper

Plug-ins

Front-

ends

Figure 1. VizzAnalyzer Framework

source code information extraction. We have extended this
API with our own data extraction client.
CrocoPat [4] manipulates relations of any arity. Its query
and manipulation language is based on first-order predicate
calculus. CrocoPat is used for program analysis.
yEd [5] is a Java graph editor that can be used to generate
drawings and apply automatic layouts to all kinds of dia-
grams and networks. It is used for program visualization.
Figure 16, e.g., is created with yEd.
Excel is used for statistic analyses on metrics and their vi-
sualizations. All diagrams are created this way.
WilmaScope [6] is a Java3D application which creates real
time 3d animations of dynamic graph structures. It is used
for program visualization.

Our own reverse-engineering plug-ins include:
Vizz3D, a 3D visualization framework, allowing the illus-
tration of program information. Various layout algorithms
can be added at run-time allowing visual complexity reduc-
tions. Bindings specify the mapping of metric results with
visual properties (such as height, width, type, color etc.) in
order to emphasize certain aspects of the system.
Analyzer is a analysis component, which was used to calcu-
late all metrics we discuss in Section 3. Further, it allows to
perform focusing on program information, i.e. aggregation,
filtering and merge of information. Moreover, the analyzer
allows to perform advanced analysis, such as architecture
recovery.

The birth of the VizzAnalyzer is dated to July, 2000,
when it was announced as a thesis project at Karlsruhe Uni-
versity, Germany. In that work, a first version of the anal-
ysis component was added to an algorithm animation tool
named VizzEditor. From that time on, many students par-
ticipated in its development and the size and complexity of
the software grew rapidly.

In September 2002 the responsibility for the VizzAna-
lyzer (we refer to this version as VA0209 from here on) was
moved to Växjö University with all its features (and prob-
lems). One of the major problems was a very high (intu-
itive) complexity of the tool. The reason for that was that
the students at Karlsruhe University had repeatedly tried to
add their own contributions to the tool by making as few
changes in the original code as possible. At this stage, the
VizzAnalyzer was no more maintainable, especially, not by
a new development and maintenance team. The only way
out was to re-engineer the entire tool.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

L
O

C

0

100

200

300

400

500

600

C
la

s
s

e
s

,
d

e
c

a
 M

e
th

o
d

s

LOC Classes deca Methods

Figure 2. The Size of the VA versions

Intuitively, the re-engineering resulted in a less complex
system where about 1/3 of the original code was removed
(VA0303). The results of our re-engineering are documented
in [7]. Figure 2 shows how the system size has changed over
time. It compares Lines of Code (LOC), number of methods
and number of classes. Note that the reduction of number of
methods is around the factor 5. Intuitively, this leads to the
assumption that the internal code quality might have been
improved between the versions VA0209 and VA0303. We
will investigate this hypothesis in the next section.

With the version VA0303 the refactoring of the essential
components began. What was one huge intervened system
before, was refactored in an initial attempt to the following
components: core (program entry points and actual frame-
work), analysis (program information extraction and pro-
gram analysis), visualization and a graph package. Our hy-
pothesis here is that the system should be less coupled. We
will investigate our intuitive observation with actual metric
measurements in the next section.

The development on the VizzAnalyzer continued dur-
ing the period of August 2003 (VA0308) to February 2004
(VA0402). The graph package became a separate component
through a course initiative, today known as Grail. The visu-
alization component evolved through many theses and stu-
dent projects to a separate 3D visualization tool (Vizz3D).
At the same time, the VizzAnalyzer was re-engineered once
more towards a framework with plug-in functionality. The
goal here was to facilitate the integration of other reverse
engineering tools. In order to achieve this, all components
of the VizzAnalyzer were decoupled into separate modules:

2

Core: program entry point and the actual framework, Re-
coder: information extraction (a plug-in module), Ana-
lyzer: program analysis engine providing metrics compu-
tations, pattern detection, etc. (a plug-in module), Vizz3D:
visualization (a plug-in module), and Grail: the database of
the framework and orthogonal to all the other components
(not a plug-in). The hypothesis is again that the system
should be less coupled, separating intended components and
increasing therefore the systems maintainability.

From version VA0402 to version VA0406 Vizz3D was
refactored in order to allow for better reusability of common
classes and interfaces between the Java3D and OpenGL im-
plementations. Figure 2 shows that although the number
of methods has increased between those two versions, the
number of LOC and number of classes remained almost
constant. This indicates our re-engineering efforts. Finally,
towards version VA0408 the VizzAnalyzer gained size again
due to the implementation of the metrics used for this paper.

3. Metrics

In this section, we give a brief presentation of the met-
rics used to measure the quality of the different VizzAna-
lyzer versions. The packages being measured are the Core,
the Analyzer, the Recoder (our connection to the Java fron-
tend), Vizz3D, and Grail. The choice was simple, since
the original system VA0209 consisted of exactly those pack-
ages. However, at that time the packages were not con-
sistent with system components and intervened with each
other. Throughout the years, the VizzAnalyzer was re-
engineered to a system with separated components along
the above package boundaries. Hence, the packages above
have survived over the years.

The program information for the metric computations,
the basic program model, is represented in a number of
graph structures. By default, the VizzAnalyzer computes
two graphs: a class hierarchy graph containing class and
interface (nodes) and extends and implements relations
(edges), and a call graph containing methods, constructors,
fields and initialization blocks (nodes) and their mutual ac-
cesses (edges). This graph is derived using the Rapid Type
Analysis algorithm [8].

By configuration, other program information can be re-
trieved, as well. Then the VizzAnalyzer computes further
graphs. Virtually any Abstract Syntax Tree node can be a
node in such a graph; any relation from the static seman-
tic analysis can be an edge. The latter include type-, field-
, method-, and constructor-references, extends and imple-
ments relations, and package containment. For each metric
applied, we configure a tailored program information graph.
These graphs are described below together with the respec-
tive metrics.

The quality model we used as a basis for re-engineering

tasks was targeted at maintainability. Other object-
orientated qualities were considered secondary. To measure
qualities of a system, we have implemented well established
metrics from literature. Even that we targeted at maintain-
ability, we measured metrics directly supporting maintain-
ability but other standard metrics, as well. What follows is
a short description of the metrics we selected:
Weighted Method Count (WMC) [9] computes the com-
plexity of the methods of a class and is also a measure for
the complexity of a class. It gives a good idea about how
much effort is required to develop and maintain a class it-
self. The weighed method count was implemented accord-
ing to the suggestion by Li and Henry [10], where the meth-
ods are weighted according to McCabe’s Cyclomatic Com-
plexity Metric. Our implementation counts the possible ex-
ecution branches in a method for the branching statements:
if, for, while, do. It is assumed that each branch has the
same complexity/weight. McCabe’s Cyclomatic Complex-
ity is a measure on rational scale. This metric is computed
on a program information graph containing class, method,
while, until, for, and if nodes (AST nodes) and the syntacti-
cal contains relation (edges).
Depth of Inheritance Tree (DIT) [11] is the length of the
path from a class to the root class of the inheritance tree.
The deeper a class is in the hierarchy, the higher is its po-
tential to reuse inherited methods. However, if the hierarchy
is too deep, this could be an indication of misuse of inher-
itance. The DIT metric can not absolutely indicate good
code quality. It is rather used to allocate outliers for bad de-
sign. In our implementation, the DIT values are calculated
for each class and interface considering implements and ex-
tends relations. It expresses the longest distance to the root
of the hierarchy. This measure is on an absolute scale rang-
ing from 0 to the maximum depth of the inheritance tree;
it is computed on the class hierarchy graph (computed by
default by the VizzAnalyzer).
Number of Children (NOC) [11] represents the number of
immediate subclasses of a class in a class hierarchy. More
children indicate better reuse, since inheritance is a form
of reuse. However, if a class has a large number of chil-
dren, it may be the case of misuse of subclassing. In [9], it
is suggested that classes high in the hierarchy should have
more subclasses than those lower down. In our implemen-
tation the NOC is calculated for each class and interface by
counting classes or interfaces extending or implementing it
directly (number of children). The values are integer val-
ues ranging from 0 for no children to the maximum number
of children a class has on an absolute scale. This metric
is computed on the class hierarchy graph (computed by de-
fault).
Data Abstraction Coupling (DAC) [11] represents the
number of references to abstract data types (ADT’s) defined
in another class. The higher the number is, the more com-

3

plex is the coupling of a class with other classes. Counted
are the fields defined in a class referencing a user defined
type, not a primitive, language or library defined type. In-
herited fields are not counted. The DAC is calculated for
each class and interface. The values are integer values rang-
ing from 0 (indication no other ADT is referenced) to a
maximum number on an absolute scale. This metric is com-
puted on a program information graph containing class and
field nodes (AST nodes) as well as contains and type refer-
ence relations (edges).

Package Data Abstraction Coupling (PDAC) lifts the
DAC to package level. It represents the number of ADT’s
referred from one class to another crossing package bound-
aries. The higher the number is, the tighter is the coupling
of two packages. Counted are the fields defined in classes
within a base package (top-level package), referencing a
user defined type in another base package. Base packages
that logically belong the same component are considered as
one package. The values are integers ranging from 0 (in-
dicating that no other ADT is referenced) to a maximum
number on an absolute scale. This metric is computed on
a package graph containing package declarations, class and
field nodes (AST nodes) as well as contains and type refer-
ence relations (edges).

Change Dependency Between Classes (CDBC) [12] de-
termines the potential amount of follow-up work to be done
in a client class when a server class is modified. It indicates
the strength of coupling. The goal is to keep changes in the
system local by reducing the system coupling. Lower values
indicate lower coupling and, thus, a better stability in the
system. The CDBC value is defined between a client and
a server class as the number of methods which need to be
(potentially) changed in the client if a server changes. The
CDBC value is between 0 and the count of methods in the
class. We compute the average CDBC value of each (client)
class over all (server) classes it is directly connected with.
The scale is rational. This metric is computed on a pro-
gram information graph containing class, method, construc-
tor, field, and initialization block nodes (AST nodes) and
(besides the syntactical containment) the type reference, ex-
tends, and implements relations (edges).

Tight Class Cohesion (TCC) [11] is the relative number
of directly connected methods in a class. TCC indicates
the degree of connectivity between visible methods in a
class. Given the number n of local methods (excluding
inherited methods), TCC is defined as ndp over np with
np = n×(n−1)

2 the possible pairs of these methods and ndp
the number of method pairs actually calling another. Note,
that this is a slight deviation from the TCC definition in [11].
The TCC for a class is 0 if np = 0. The resulting values
range from 0.0 to 1.0 on an rational scale. Higher values
indicate better cohesion of the classes. Low values indicate
that a class has a low cohesion. This metric is computed on

the call graph (computed by default).
Tight Package Cohesion (TPC) lifts the TCC metric to
package level and retrieves the relative number of classes
directly connected by calls in a package. TPC indicates the
degree of connectivity between classes within a package.
Given the number n of package local classes, TPC is de-
fined as ndp over np with np = n×(n−1)

2 the possible pairs
of these classes and ndp the number of class pairs actually
calling another. The TPC for a package is 0 if np = 0. The
TPC metric is calculated similar to the PDAC on base pack-
ages containing components. The resulting values range
from 0.0 to 1.0 on an rational scale. Higher values indicate
higher cohesion of the package. This metric is computed on
a call graph with package declarations.
Lack of Documentation (LOD) measures the amount of
undocumented declarations per class (counted are the class
declaration itself and the method declarations, but not field
declarations). Only JavaDoc style documentation is taken
into account. Documentation within methods is ignored.
Only the syntax of the comments is parsed, not the seman-
tics. The LOD value is calculated for each class or interface
as the number of undocumented declarations. A LOD of 0
indicates that all possible entities are documented; a higher
value indicates the lack of documentation. The LOD is on
an absolute scale. A problem with this metric is apparently
automatic JavaDoc generation. Tools supporting this fea-
ture prevent the exact measurement of undocumented dec-
larations. Nevertheless, this problem merely implies that
we cannot discover all undocumented code, i.e. we cannot
recover all problems inherent.

All metrics, except LOD, PDAC, and TPC, are well de-
fined and validated in the literature. Especially, [10, 11, 13,
14] give a detailed description of these metrics and a valida-
tion of their use and acceptance within the maintenance and
re-engineering community. The results received from these
metrics give a good idea about the complexity of the sys-
tem in respect to the classes themselves, their hierarchical
arrangement, their coupling and their cohesion.

PDAC and TPC are natural extensions of the correspond-
ing metrics DAC and TCC to package level. The LOD met-
ric is an exception. We could not find any similar specifi-
cation in the literature. The closest specification was found
in [15, 16], where the density of comments is calculated by
the amount of comment lines divided by the amount of lines
of code.

4. Interpretation of the Metrics

The metrics described in Chapter 3 help to measure dif-
ferent aspects of maintainability as well as other qualities
of a system. In the following, we discuss maintainability
and those other qualities on system design, class design and
complexity level.

4

4.1 System Level Design

On this level we look at the design of the system archi-
tecture and the system’s inheritance structure.

The system architecture is defined by the system’s com-
ponents and their interactions. Components are interacting
sets of classes and smaller components, i.e. the notion of a
component is recursive. Interactions include method calls
and field accesses.

An architecture is considered well maintainable, if its
components have a low external coupling to other compo-
nents. Then they are easy to change without affecting other
components. Not directly related to maintainability but also
reported as desirable is a high internal cohesion; otherwise
one might consider splitting the component.

Packages could contain components. They could also be
designed after other concerns crosscutting components. For
example, one could group all interfaces in a package. Only
the former kind of packages should show high cohesion and
low coupling to others. We applied TPC and PDAC only
to those packages that are intended components. For those
packages, low cohesion (TPC) and high coupling (PDAC)
can be considered as design faults.

The inheritance structure of a system is defined by imple-
ments and extends relations of classes and interfaces. Such
a structure is expected to follow a few general design rules.

Chains in the inheritance structure of length one are con-
sidered a sign of unnecessary abstraction. Moreover, they
should neither be too deep nor too wide, i.e. extreme devia-
tions from the average should be inspected. These rules are
not directly related to maintainability.

4.2 Class Level Design

In the same way that package cohesion and coupling in-
dicate good design of components, they are applicable to
assess the design of individual classes.

Since, high cohesion and low coupling are desired, a cor-
relation between DAC and TCC is essential to indicate out-
liers. The design of a system should be changed if the cor-
relation indicates classes with a high DAC (coupling) and
low TCC (cohesion) value. However, only the DAC is di-
rectly related to maintainability: classes with high coupling
to others cannot be understood in isolation. This, however,
is essential to maintain the classes.

Another design problem can be found, when correlat-
ing classes that have a huge affect on other classes upon
change (CDBC); even worse, when those classes are bad
documented (LOD). Therefore it is wise to correlate the
CDBC and LOD metric in a diagram to find such outliers.

Metric Version Minimum Average Maximum Norm

WMC VA0209 0 17.61 152 1.30

VA0303 0 10.53 152 0.77

VA0308 0 12.10 276 0.89

VA0402 0 15.85 178 1.17

VA0406 0 12.41 182 0.91

VA0408 0 13.05 223 0.96

DIT VA0209 0 1.4987 8 1.73

VA0303 0 1.0808 5 1.25

VA0308 0 0.5950 3 0.69

VA0402 0 0.7207 5 0.83

VA0406 0 0.6368 5 0.74

VA0408 0 0.6552 5 0.76

NOC VA0209 0 0.5908 10 1.17

VA0303 0 0.5606 11 1.11

VA0308 0 0.4200 19 0.84

VA0402 0 0.5053 20 1.00

VA0406 0 0.4595 12 0.91

VA0408 0 0.4807 12 0.96

DAC VA0209 0 0.6087 9 0.92

VA0303 0 0.4394 20 0.66

VA0308 0 0.4500 5 0.68

VA0402 0 0.6117 8 0.92

VA0406 0 0.9453 27 1.43

VA0408 0 0.9168 32 1.38

CDBC VA0209 0 1.5070 59.00 1.11

VA0303 0 0.7683 11.00 0.57

VA0308 0 1.0871 9.08 0.80

VA0402 0 1.7600 28.00 1.29

VA0406 0 1.4340 24.00 1.05

VA0408 0 1.6010 25.60 1.18

TCC VA0209 0 0.0353 1.00 0.81

VA0303 0 0.0262 1.00 0.60

VA0308 0 0.0520 1.00 1.19

VA0402 0 0.0374 1.00 0.86

VA0406 0 0.0571 1.00 1.31

VA0408 0 0.0542 1.00 1.24

LOD VA0209 0 13.6573 72 1.95

VA0303 0 3.3409 51 0.48

VA0308 0 4.4800 46 0.64

VA0402 0 6.7394 44 0.96

VA0406 0 6.4617 72 0.92

VA0408 0 7.2495 61 1.04

TPC VA0209 0 0.2479 1.000 2.09

VA0303 0 0.0685 0.152 0.58

VA0308 0 0.1354 0.300 1.14

VA0402 0 0.1024 0.227 0.86

VA0406 0 0.0893 0.236 0.75

VA0408 0 0.0681 0.154 0.57

PDAC VA0209 0 65.80 217 1.04

VA0303 0 140.80 393 2.23

VA0308 0 105.00 200 1.66

VA0402 0 33.25 76 0.53

VA0406 0 22.50 60 0.36

VA0408 0 11.75 47 0.19

Figure 3. Metric Results

4.3 Complexity

Classes that are both highly complex and large are criti-
cal when it comes to understanding and maintenance. Since
large complex classes are potentially problematic with re-
spect to understandability and maintainability, the WMC
and LOC metric should be correlated to find such outliers.

5. Analysis

Applying the quality metrics discussed above on the dif-
ferent versions of the VizzAnalyzer, we retrieve the infor-
mation depicted in Figure 3. We followed the method of
the FAMOOS consortium reported [11] and measured for
each metric the minimum, the maximum, and the average
over all occurrences. The average allows to compare differ-

5

ent versions with another, since it takes the number of the
analyzed entities (e.g. classes, methods, etc.) into account.

In order to relate different metrics of the same version
the metrics are normalized in the way, that they vary around
the value 1. This normalization concept is similar to [17].
The normalization Norm is defined as:

Norm =
Average

Ā
with Ā =

∑
Average

versions

5.1 System Design

Much effort for improving the VizzAnalyzer’s maintain-
ability was spend on the decoupling of components. Fig-
ure 4 shows our clear trend in the corresponding metric
PDAC. Note that the edges connecting measure points are
just an aid to easier follow the trend between the values.

0.0

0.5

1.0

1.5

2.0

2.5

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
P

D
A

C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

PDAC LOC

Figure 4. PDAC Metric

Even with increasing system size (the LOC increase
throughout the versions), the coupling decreases between
version VA0303 and VA0408 (lower values indicate better
coupling). The only exception occurs during our first re-
engineering effort from version VA0209 to VA0303, where
we aimed at throwing away useless wrappers. Then LOC
decreased and the coupling between components somehow
increased.

0.0

0.5

1.0

1.5

2.0

2.5

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
T

P
C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

TPC LOC

Figure 5. TPC Metric

Low coupling does not necessarily induce high cohe-
sion. In Figure 5, we see that the trend for the cohesion
metric is bad (remember, higher values indicate better co-
hesion). However, cohesion is not a maintainability metric
and, hence, not a goal in our re-engineering efforts.

However, the negative trend of the TPC metric does
not explicitly indicate a bad result. Comparing VA0402 to
VA0406 shows an TPC average decrease of 0.0131. The
decrease can be explained by our refactoring efforts. In-
creasing the amount of classes while retaining the amount
of methods in a package, results in an increased np, while
the ndp remains constant. This leads to a lower TPC.

Figure 6 shows the distribution of the DIT value. No-
tice that VA0209 has a high depth of inheritance (there exits
many classes with a DIT of 4 and even 5), which indicates
possibly useless abstractions. Our interpretation is that the
system was highly unstable at that version and students en-
hancing the system preferred to use the available classes and
inherit from them, rather than to modify them directly. Af-
ter the first re-engineering, these abstractions have been re-
duced.

0 1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

#
 C

la
s

s
e

s

DIT

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Figure 6. DIT Distribution

Classes with a NOC of one also indicate faults in the
design of the inheritance relationship because they indicate
unnecessary abstraction. They need to be inspected individ-
ually to verify whether they were meant to be extended for
polymorphism in the future. Figure 7 shows that quite many
classes with a NOC of one exist in all versions. This, again,
is not a problem directly related to maintainability.

0 2 4 6

8

1
0

1
2

0

50

100

150

200

250

300

350

400

#
 C

la
s

s
e

s

NOC

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Figure 7. NOC Distribution

6

5.2 Class Design

Figure 8 shows that the coupling between the classes
in each version has increased. Hence, the system has be-
come harder to understand, or at least the individual classes
thereof. Interesting to notice here is the increasing complex-
ity between VA0402 and VA0406. Although, that the size of
the VizzAnalyzer was rather stable, the coupling increased,
which was an unexpectedly negative result.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
D

A
C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

DAC LOC

Figure 8. DAC Metric

The result of the TCC analysis is depicted in Figure 9.
We had to realize that our TCC values are very poor in gen-
eral. It becomes obvious that almost none of our classes
were optimized for being cohesive (i.e. values close to 1).
Cohesion on class level is not supporting maintainability di-
rectly.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
T

C
C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

TCC LOC

Figure 9. TCC Metric

The general low TCC (around 0.1, 0.2) can be explained
as a result of our deviated implementation of the TCC met-
ric. Our implementation allows a much higher number of
possible method pairs, which is never reached in reality.
Examining some classes with a very low TCC shows that
these classes are well implemented in respect to cohesion,
even so the results indicate a value of 0.1. Hence, rather
our TCC deviation than the design of the classes should be
considered inappropriate.

Figure 10 shows a correlation graph between the TCC
and DAC values over the different VizzAnalyzer versions.
Outliers, indicating low cohesion and high coupling, are to
be found in the left upper corner of the figure. We can con-
clude that the amount of outliers is minimal. However, the

general cohesion of the classes is poor.

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2

TCC

D
A

C

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Figure 10. TCC/DAC Correlation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
C

D
B

C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

CDBC LOC

Figure 11. CDBC Metric

Figure 11 reveals that, while the system was re-
engineered during the phases VA0209 to VA0303, and
VA0402 to VA0406, the CDBC value decreased, i.e. the
change dependency decreased and the maintainability in-
creased. The final re-engineering step, and some others in
between, increased the CDBC, i.e. decreased maintainabil-
ity.

Maintenance becomes even harder, when the documen-
tation of classes with a high CDBC is poor. Figure 12 shows
the lack of documentation throughout the versions.

0.00

0.50

1.00

1.50

2.00

2.50

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
L

O
D

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

LOD LOC

Figure 12. LOD Metric

Notice the high degree of documentation in version
VA0303, after the VizzAnalyzer was entirely re-engineered.
Unfortunately, the documentation was slightly neglected

7

during further development. The figure maps our intuition
(from a developer’s point of view) and uncovers therefore
no surprise.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

CDBC

L
O

D

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Figure 13. CDBC/LOD Correlation

A correlation graph between CDBC and LOD is shown
in Figure 13. Quite a few outliers can be noticed with a
high change dependency and poor documentation. The only
outlier in the top right corner of the diagram comes from the
very first version.

5.3 Complexity

Figure 14 shows that the first version of the VizzAna-
lyzer had a higher complexity than the following version
VA0303. This is an indication that our re-engineering ef-
forts between those two versions were successful. However,
while we continued to add functionality to the VizzAnalyzer
again, the complexity increased again. This trend can be ob-
served best between version VA0308 and VA0402, where the
code size has more than doubled.

Page 1 Sheet2 Chart 9

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Versions

A
ve

ra
g

e
W

M
C

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

L
O

C

WMC LOC

Figure 14. WMC Metric

From version VA0402 to VA0406 the complexity has de-
creased, while the code size was about the same. This can
be explained as an re-structuring effort to decrease the class
complexity of the newly added sources in the previous ver-
sion.

Figure 15 shows a correlation graph between WMC and
LOC. Outliers (in the top right quadrant of the diagram) in-

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

WMC

L
O

C

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

Figure 15. WMC/LOC Correlation

dicating large and complex classes are frequent between the
versions. However, for the current version only one outlier
with over 2000 lines of code and a WMC value of 223 is
visible. This class serves currently as an event listener and
will be restructured in the next release.

6. Discussion

Maintainability was poor in version VA0209 of the Viz-
zAnalyzer; this initial intuition could be objectified by our
measurements. Improving this quality was, along with bug
fixing and adding functionality, the major goal in our re-
engineering efforts.

Figure 16 a) shows the VizzAnalyzer architecture of the
VA0209 version; Figure 16 b) shows the architecture of ver-
sion VA0408. In both pictures, nodes are classes and inter-
faces, edges mutual usage (method and constructor calls,
field accesses).

In version VA0209, the system consisted of mainly one
huge and highly unstructured component. Due to re-
engineering, coupling of components, and thereby main-
tainability, has improved significantly in version VA0408.
Figure 16 at least gives that impression. In both drawings,
a spring embedding layout algorithm tries to place coupled
classes and interfaces together. Hence, the obvious impres-
sion of a lower coupling of components in version VA0408

compared to version VA0209 is not artificially induced by an
unfortunate drawing of the latter.

The VizzAnalyzer consists of the components that corre-
spond to the packages introduced before: the Core is illus-
trated in the middle-upper part, the Vizz3D to the left, the
Recoder to the right and the Analyzer is adjacent to and be-
low the Core. It is no mistake that the Analyzer has a higher
coupling to the Core since it offers more than one service
(focusing, metric and other high level analysis).

The PDAC metric objectively supports the illustrated
trend in Figure 16 of a more decoupled system. This trend
is also depicted in Figure 17. This figure contains also the

8

(a) (b)

Figure 16. VizzAnalyzer Architecture. (a) Version 0209 (b) Version 0408

trend of the other metrics related to maintainability that we
observed. Besides PDAC, these metrics are WMC, CDBC,
DAC, and LOD.

WMC indicating the complexity of methods and classes
has decreased after the first re-engineering effort and than
remains constant even though the system was growing.

The CDBC and DAC developments, indicating different
coupling of classes, are not quite as positive. Improvements
in decoupling happened rather in the large on component
level than in the small on class level. However, the CDBC
and DAC developments showed only a mild increase with
increasing system size, which can be considered natural.

The LOD, i.e. the lack of documentation, indicates a
clear improvement again. After a huge effort in the first re-
engineering step, the degree of documentation is now stable
with increasing system size. Altogether, maintainability has
improved according to our metrics.

0.00

0.40

0.80

1.20

1.60

2.00

2.40

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

LOD WMC CDBC PDAC DAC

Figure 17. Maintainability Metrics at a Glance.

Metrics under investigation not directly coupled to main-
tainability but rather to generally good object-oriented pro-
gramming style are DIT, NOC, TPC, and TCC. These met-
rics are shown once more in Figure 18.

The high DIT value of version VA0209 indicates a too ex-
tensive use of inheritance. This has improved over the ver-
sions. The NOC does neither turn too good nor bad. Low
TCC and TPC values, respectively, indicate low class and
package cohesion, respectively, which is considered bad
object-oriented style. Even though our TCC increases over
the versions, the distribution shows that almost all classes
have a rather low cohesion. TPC indicates an unfortunate
trend over the versions; it is decreasing while an increase
would be desirable.

Altogether, there is no general positive trend in the
object-oriented programming style according to our met-
rics. Again, the metric trends do not contain a surprise: one
cannot expect to get a quality if it is not directly a goal in
the re-engineering process.

0.00

0.40

0.80

1.20

1.60

2.00

2.40

VA0209 VA0303 VA0308 VA0402 VA0406 VA0408

DIT NOC TPC TCC

Figure 18. The Other Metrics at a Glance.

9

7. Conclusion

Over the last years, we re-engineered our tool VizzAn-
alyzer with the goal of improving the maintainability. We
succeeded in these efforts. Our analyses have confirmed
that VA0209 was not only intuitively hard to maintain, but
also objectively. In version VA0408, four main developers
and a number of students maintain the four main compo-
nents. They works to a large degree independent of another,
which gives an idea of the system being now not only ob-
jectively easier to maintain, but also intuitively.

This paper describes experiments. We applied well-
established metrics detecting maintainability (and other
object-oriented programming qualities) to historical and
current versions of the VizzAnalyzer framework. The trend
of the maintainability metrics correlates to the positive ex-
periences of the developers regarding system maintainabil-
ity. In general, the experiments can be interpreted as a sup-
port of the appropriateness of these metrics. We found the
PDAC, CDBC, WMC, LOD and DIT metrics very useful to
measure the maintainability of the VizzAnalyzer itself.

The evaluation also brought up some new aspects. Low
coupling between packages does not automatically go along
with high cohesion within the packages. Moreover, the Viz-
zAnalyzer is less coupled on package level now than in the
first versions, which is supported by PDAC and, intuitively,
by Figure 16. On class level, the metrics CDBC and DAC
indicate a slightly higher coupling degree now. We under-
stood that these metrics are rather reflecting the coupling in
the small and not the coupling on architecture level.

The main quality goal in the re-engineering targeted
at improved maintainability whereas other object-oriented
programming qualities were considered secondary. It is
therefore not surprising that the trend of these metrics is not
that positive. One does not get these quality automatically
when improving only maintainability.

Since we applied the VizzAnalyzer metrics on the frame-
work itself, the paper shows two more results as a side ef-
fect: the VizzAnalyzer metrics are applicable in larger soft-
ware projects and the tool itself has a decent internal quality.

Currently, we are evaluating software quality in indus-
trial projects. This requires the implementation of further
metrics, not all directed to maintainability. Our long term
goal is to verify (or falsify) these metrics in experiments.

References

[1] VizzAnalyzer. http://www.msi.vxu.se/˜tps/
VizzAnalyzer, 2003.

[2] T. Panas, J. Lundberg, and W. Löwe. Reuse in Reverse En-
gineering. In 12th International Workshop on Reverse Engi-
neering,Bari,Italy, June 2004.

[3] A. Ludwig, R. Neumann, U. Aßmann, and D. Heuzeroth.
Recoder homepage. http://recoder.sf.net, 2001.

[4] D. Beyer and C. Lewerentz. CrocoPat: Efficient Pat-
tern Analysis in Object-Oriented Programs. In 11th Inter-
national Workshop on Reverse Engineering,Portland,USA,
May 2003.

[5] yWorks. http://www.yworks.com/en/products_
yed_about.htm/, 2004.

[6] Wilmascope. http://www.wilmascope.org/, 2004.

[7] R. Lincke. Development of a Graph Visualization Frame-
work, Master Thesis. Växjö University, July 2003.

[8] D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++
Virtual Function Calls. ACM SIGPLAN Notices, 31(10):324–
341, 1996.

[9] S.R. Chidamber and C.F. Kemerer. A Metrics Suite for
Object-Oriented Design. IEEE Transactions on Software En-
gineering, 20(6):476–493, 1994.

[10] W. Li and S. Henry. Maintenance Metrics for the Object
Oriented Paradigm. In IEEE Proc. of the 1st Int. Software
Metrics Symposium, pages 52–60, May 1993.

[11] H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse,
M. Lanza, R. Marinescu, R. Nebbe, O. Nierstrasz, T. Rich-
ner, M. Rieger, C. Riva, A. M. Sassen, B. Schulz,
P. Steyaert, S. Tichelaar, and J. Weisbrod. The FAMOOS
Object-Oriented Reengineering Handbook. Technical re-
port, Forschungszentrum Informatik, Karlsruhe, Software
Composition Group, University of Berne, ESPRIT Program
Project 21975, 1999.

[12] M. Hitz and B. Montazeri. Measuring Coupling in Object-
Oriented Systems. Object Currents, 1(4), 1996.

[13] V.R. Basili, L. Briand, and W.L. Melo. A Validation of
Object-Oriented Design Metrics as Quality Indicators. Tech-
nical report, Univ. of Maryland, 1995.

[14] B. Henderson-Sellers. Object-Oriented Metrics: Measures
of Complexity. Prentice Hall, 1996.

[15] F. Lanubile and G. Visaggio. Evaluating Empirical Models
for the Detection of High-Risk Components: some lessons
learned. In Proc. of the Twentieth Annual Software Engi-
neering Workshop, Goddard Space Flight Center, Greenbelt,
Maryland. Software Engineering Laboratory Series, SEL-
95-004, 1995.

[16] refactorit. http://www.refactorit.com/, 2004.

[17] J.Bansiya and C.G.Davis. A Hierarchical Model for Object-
Oriented Design Quality Assessment. IEE Transactions on
Software Engineering, 28(1), January 2002.

10

